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Sorghum [Sorghum bicolor (L.) Moench], is believed to be originated in Ethiopia and Sudan. Although, many 
morphological and molecular diversity studies reveal the existence of genetic variations with sorghum 
populations, their distribution within basic races were not considered. Hence, the present study aimed to 
analyze the extent and distribution of genetic variation within basic Ethiopian sorghum landraces using SSR 
markers. A total of 107 landraces obtained from Ethiopian Biodiversity Institute (EBI) representing 12 ecological 
zones grouped according to their race types based on inflorescence and spiklet on field at their maturity time. 
Twelve SSR markers revealed a total of 110 alleles with average polymorphic content of 0.76 and the allele 
frequencies show 42 of them were rare (less than 0.05), 22 ranged from 0.05 to 0.1, while 46 of them were higher 
than 0.1. Expected and observed heterozygosity were 0.78 and 0.2, respectively. The genetic differentiation 
between populations were also moderate (FST=0.07 for races and 0.13 for E/zones) indicating continuous 
exchange of genes among them. Partitioning the total genetic variation also indicated 61.38 and 55.17% of the 
variations were among individuals within racial and zonal populations, respectively. Neighbor-Joining cluster 
analysis also indicated four major grouping of the landraces according to their racial groups where majority of 
race caudatum and durra form separate groups while intermediate durra-bicolor form two separate sub-
clusters. Overall locus, the intra-racial population diversity showed the greatest genetic diversity (He=0.77 and 
0.75) among race dura-bicolor and caudatum, respectively. Information with sorghum races along their 
important agronomic traits could be used for conservation and future breeding programs of sorghum. 

Key words: Sorghum bicolor, races, genetic diversity, SSR. 

INTRODUCTION 

Sorghum [Sorghum bicolor (L.) Moench], a cultivated 
diploid (2n = 20) tropical cereal C4 grass plant, is the fifth 
most   important   cereal  crop  grown  in  the  world.  It  is 

a monocotyledon plant of tropical origin, belonging to 
Poaceae family. Having nutritional composition similar to 
maize,   starch   is   the   major   component   of  sorghum 
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followed by protein, fat, and fiber   (Council, 1996). The 
crop displays relatively high-water use efficiency 
compared to other cereals such as maize and wheat. Its 
wide adaptation to harsh environments, tolerance to 
stress conditions, diverse germplasm collections and its 
small genome size (710 Mb) made sorghum as an 
important botanical model crop for many tropical 
grasseswith complex genomes, which employ C4 
photosynthesis. Sorghum is also the first crop genome of 
African origin to be sequenced (Dogget, 1965; Council, 
1996). 

Ethiopia is the second largest sorghum producer in 
Africa, after the Sudan and first among countries that 
have contributed many germplasm collections to the 
world collections of sorghum at both International Crop 
Research Institute for Semi-Arid Tropics (ICRISAT) and 
Griffin by National Plant Germplasm System (NPGS) 
(Demeke, 2013). It is one of the most important staple 
cereal crops after tef [Eragrostis tef (Zucc.) Trotter.] and 
maize (Zea mays L.) and holds third largest share of total 
cereal production with tef, maize, sorghum and wheat 
(Triticum aestivum L.) accounting for about 24.0, 16.8, 
14.6, and 13%, respectively. Being an indigenous crop to 
Ethiopia, it is cultivated in almost all regions by 
subsistence farmers for various uses including as food 
and feed, house and fence construction, and prepare 
local beverages (CSA, 2014). 

Though it was difficult to determine when and where 
sorghum domestication occurred, different studies 
suggested Ethiopia as a center of origin of sorghum due 
to the wide variation of the crop (McGuire, 2008; Vavilov, 
1951). These also enable Ethiopian sorghum landraces 
as a source for an important agronomic trait including 
resistance to pest, sorghum midge (Contarinia 
sorghicola), and high lysine and protein contents (Fetene 
et al., 2011; Council, 1996). Sorghum had five basic 
races; namely bicolor, caudatum, durra, guinea and kafir. 
The entire races were differentiated morphologically 
based on their inflorescence, grain and glumes (Harlan 
and Wet, 1972). Clarissa et al. (2013) also described the 
geographic pattern of distribution of each race appears 
following the topography and climate variation present in 
Ethiopia. All the basic sorghum races except kafir also 
reported in Ethiopia. Accordingly, sorghum race durra is 
the main crop of the eastern highland region and mid 
elevation terrace of the north, while caudatum race is 
grown primarily in hot, dry valleys and lowland savannas 
in the south and west of Ethiopia. The intermediate race 
durra-bicolor predominates in the southwestern highland 
region, where cooler temperature and rain are higher 
than eastern and northern region. In contrast, bicolor and 
guinea races represent a very small part of Ethiopian 
sorghum diversity and both are mostly found in the Rift 
Valley region (House, 1985).  

The diversity studies involving Ethiopian germplasms 
indicated the presence of huge genetic and 
morphological variations within their regions of origin and 
adaptation zones. Gebrekidan (1981) classified  sorghum 

adaptation zones as: lowland (<1600 m above sea level 
(masl)), intermediate (1600-1900 masl) and highland 
(>1900 masl) in Ethiopia (Gebrekidan, 1981). Qualitative 
and quantitative studies, in addition to RAPD, AFLP and 
SSR markers utilized by different scholars also revealed 
the same amounts of variations among their collections 
(Ayana and Bekele, 1998; Geleta et al., 2006; Cuevas 
and Prom, 2013). SSR marker studies from Eritrean, 
Eastern Kenya, Benin and Zambia collections also 
showed presence of wide genetic diversity of sorghum 
bicolor in Africa mainly in Eastern regions (Tesfamichael 
et al., 2014; Catherine et al., 2016; Antoine et al., 2015; 
Ng'uni et al., 2011). The existence of imbalanced 
sorghum races in the sample collections of the different 
studies from Ethiopia might contribute to the overall 
observed genetic variation (Cuevas and Prom, 2013). 
Ethiopian Biodiversity Institute (EBI) collected large 
numbers of farmers’ landraces though they do not have a 
racial category. Antoine et al. (2015) also recommended 
research on genetic diversity to integrate both botanical 
races and morpho-physiological characteristics of the 
crops for better preservation of sorghum genetic 
resources. In addition, morphological studies involving 
germplasms from Ethiopia and Eritrea show the greatest 
share of variation observed were carried by their panicle 
compactness and shape, which is 31% (Ayana and 
Bekele, 1998). Therefore, racially partitioned diversity 
studies among founding major basic races and 
representative of the whole collections of Ethiopian 
adaptation zones were lacking. Hence, the present study 
aimed at analyzing the genetic variation within basic 
Ethiopian sorghum races. 

MATERIALS AND METHODS 

Germplasm collections 

The accessions used for this study were landrace accessions 
collected by EBI. A total of 107 sorghum landrace accessions were 
selected based on phonological evaluation of inflorescence and 
spiklet types at their maturity time in order to define the racial 
classifications in 2015/2016 cropping season at Arsi Negelle 
Research Station based on their passport data. The materials were 
received and planted along with other germplasm by Melkassa 
Sorghum Improvement Program. In addition to the difference in 
head morphology, geographical distribution of the sorghum races 
across the country were considered for selection of their adaptation 
zones. All basic sorghum races except kafir and from the 
intermediate types, widely distributed durra-bicolor were included. 
The selected 107 sorghum landrace collections were grouped 
based on their source of origins into 12 populations, which each 
contained 9 landrace accessions for DNA extraction and 
genotyping study. 

DNA extraction and PCR amplification 

The seeds of collected sorghum genotypes were planted at 
National Agricultural Biotechnology Research Center (NABRC), 
Holetta, on seedling tray in  greenhouse  for  germination.  Genomic 
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Figure 1. A: Procedures for the throughput (commonly called Dirty method) DNA extraction 
protocols (Sorghum seeds planted for their germination to be used for DNA extraction after 
two weeks, B: About 50 mm2 single leaf per accession were used, C: the leaves were 
transferred to PCR plates sequentially and 50 µl Buffer A added to each before their 
incubation at 95ºC in thermocycler for 10 minutes and the same amount of Buffer B added, 
and briefly mixed to be used for PCR amplification, and D: Confirmation of PCR amplification 
using marker xtxp258). 

DNA was extracted from 2-week old seedlings using fresh leaves 
according to Xin et al. (2003) utilizing only two ordinary buffers that 
made the genomic DNA available for PCR amplification reactions. 
Approximately 50 mm2 single leaf sample per landraces was 
harvested to PCR plates for their DNA extraction. The two buffers 
include: Buffer A made from 100 mM NaOH and 2% Tween 20, 
which are made fresh from their stock solutions (10M NaOH and 
20% Tween 20) and Buffer B consisting of 100 mM Tris-HCl and 2 
mM EDTA, whose pH set to 2.0. Once the buffers are ready, the 
genomic DNA was extracted with the following procedures: (1) 
Approximately 30 mm2 leaf tissue transferred to 96-well plates; (2) 
50 µL buffer A added and incubated for 10 min at 95°C in thermo 
cycler; (3) 50 µL buffer B was added and mixed at moderate speed; 
(4) Aliquot PCR mixture to 96-well plates at a reaction volume of 20 
µL/well; (5) and finally transfer approximately 1.5 µL DNA from the 
crude DNA plates to PCR plates with a 96-pin applicator (Figure 1). 
Twelve polymorphic SSR primer pairs (Table 1) were selected for 
genotyping the selected 107 sorghum landraces. PCR amplification 
was carried out in 20 µL reaction volume containing 1.5 µL crude 
genomic DNA, 2.25 µl PCR buffer with MgCl2 (17.5 mM), 1.8 µl of 
dNTPs (10 mM), 0.45 µl each of forward and reverse primers (10 
mM), 0.133 µl of Taq Polymerase (5U), 0.1% BSA (Bovine Serum 
Albumin)  (w/v)  and  1% PVP (w/v). The amplifications were carried 

out with thermo cycler programmed for initial denaturation at 94°C  
for 15 min, the second denaturation at 94°C for 30 s, annealing at 
50°C for 1 min, extension at 72°C for 2-min, final elongation at 72°C 
for 20 min and holding temperature at 4°C until conclusion. PCR 
products were analyzed by loading the 3 µl PCR products along 
with a 3 µL loading dye mixed with Gel Red (at a ratio of 1000:1) 
using 3.5% agarose gel electrophoresis run with 100 V for 3 h along 
with DNA Ladder (500 bp bioline Hyperladder V).  

Data collection and statistical analysis 

Once gel images were taken with Gel documentation, the PCR 
fragments were scored manually by estimating their base pair size 
as compared with known fragments size ladders that were run gel 
electrophoresis along with each accession. The number of alleles 
(N), major allele frequency (A), observed heterozygosity (Ho), 
expected heterozygosity/gene diversity (He) and polymorphism 
information content (PIC) for each SSR locus were analyzed using 
PowerMarker 3.25 (Liu and Muse, 2005). 

Pairwise genetic distance was calculated as given by Nei and 
Takezaki (1994). Further, the allelic data were subjected to estimate 
the genetic distances using  simple  matching  coefficients  and  the  
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Table 1. Lists of 13 Selected Sorghum SSR Markers used with their primer sequences. 

No. SSR marker name Forward primer sequence Reverse primer sequence Repeat motif Expected allele size 

1 Xtxp211 TCAACGGCCAATGATTTCTAAC AGGTTGCGAATAAAAGGTAATGTG (CT)23 206 

2 Xtxp258 CACCAAGTGTCGCGAACTGAA GCTTAGTGTGAGCGCTGACCAG (AAC)19 222 

3 Xgap001 TCCTGTTTGACAAGCGCTTATA AAACATCATACGAGCTCATCAATG (AG)16 240 

4 Xtxp295 AAATCATGCATCCATGTTCGTCTTC CTCCCGCTACAAGAGTACATTCATAGCTTA (TC)19 175 

5 Xtxp008 ATATGGAAGGAAGAAGCCGG AACACAACATGCACGCATG (TG)31 148 

6 Xtxp012 AGATCTGGCGGCAACG AGTCACCCATCGATCATC (CT)22 193 

7 Xtxp312 CAGGAAAATACGATCCGTGCCAAGT GTGAACTATTCGGAAGAAGTTTGGAGGAAA (CAA)26 154 

8 Xtxp141 TGTATGGCCTAGCTTATCT CAACAAGCCAACCTAAA (GA)23 152 

9 Xtxp285 ATTTGATTCTTCTTGCTTTGCCTTGT TTGTCATTTCCCCCTTCTTTCTTTT 
(CTT)11 

231 
CTC(CTT)1 

10 Xtxp021 GAGCTGCCATAGATTTGGTCG ACCTCGTCCCACCTTTGTTG (AG)18 172 

11 Xtxp357 CGCAGAAATACGATTG GCTATCTGGAGTAACTGTGT (GT)10 273 

12 SbKAKG1 AGCATCTTACAACAACCAAT CTAGTGCACTGAGTGATGAC (ACA)9 142 

genotypes were clustered using Neighbor Joining method. 
Both the clustering analysis and PCoA were done using 
DARwin software ver. 6.0.13. The data were tested for 
presence of population structure and analysis of molecular 
variance (AMOVA) was performed to separate the total 
molecular variance into components between groups, 
within groups and intra population variation using Arlequin 
version 3.0 software (Excoffier et al., 2005). Pairwise 
genetic differentiation between different groups was 
assessed with fixation index (Weir and Clark, 1984) as 
implemented in Arlequin software. 

RESULTS AND DISCUSSION 

Marker polymorphism 

A total of 110 alleles were separated using 12 
SSR markers (Table 2). The number of alleles per 
marker ranged from 5 (xtxp298 and xtxp258) to 18 
(xtxp211) with an average of 9.2 alleles per  locus. 

Xtxp298 and xtxp012 hold the lowest and highest 
number of genotypes (6 and 19, respectively) with 
an average of 15.8 genotypes per locus. The 
allele frequencies varied from 0.005 for marker 
xtxp285 to 0.648 for xtxp312 with an overall 
average frequency of 0.109. The mean number of 
alleles per locus observed in this study was higher 
than similar SSR studies with accessions from 
North Eastern Benin, 7 (Antoine et al., 2015), 
Zambia, 4.4 (Ng'uni et al., 2011), Eastern Kenya, 
5.05 (Catherine et al., 2016), Eritrea, 4.8 
(Tesfamichael et al., 2014) and Egypt, 7.3 (El-
Awady et al., 2008), and Ethiopian collections in 
combination with other countries (Agrama and 
Tuinstra, 2003). However, it is lower than Cuevas 
and Prom (2013) population structure and 
diversity study for 137 Ethiopian germplasm 
conserved at USDA-ARS National Plant 
Germplasm System, that is 14 per locus. Out of 

the total 110 alleles, specifically 42 alleles had 
frequencies below 0.05 (rare alleles), 22 alleles 
had a frequency within 0.05 to 0.10 (common 
alleles) while the rest 46 alleles had frequency 
higher than 0.10 becoming an abundant allele. 
While across all races average number of 
frequencies ranged from 7.17 in intermediate 
durra-bicolor to 4.75 in race bicolor whereas mean 
gene diversity ranged from 0.32 (bicolor) to 0.22 
(durra). Their mean number of alleles within the 
different races ranged from 7.17 (durra-bicolor) to 
4.75 (bicolor). Likewise, their gene diversity 
ranged from 0.77 for durra-bicolor to 0.70 for 
durra, guinea and bicolor (not shown).  

Their polymorphic information content (PIC) 
varied from 0.51 (xtxp312) to 0.91 (xtxp211) with 
an average of 0.76 and the expected and 
observed heterozygosity (gene diversity and 
heterozygosity  respectively)   ranged   from   0.54 
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Table 2. Basic statistics of 12 SSR markers using powermarker V3.25 software. 
  

Marker MAF NG NA He Ho PIC 

xtxp258 0.359 8.0 5.0 0.755 0.071 0.72 

xtxp008 0.284 16.0 8.0 0.813 0.257 0.79 

xtxp012 0.257 19.0 9.0 0.841 0.229 0.82 

xtxp312 0.648 8.0 6.0 0.543 0.042 0.51 

xtxp141 0.294 13.0 10.0 0.820 0.221 0.80 

xtxp211 0.108 33.0 18.0 0.917 0.619 0.91 

xtxp285 0.163 35.0 16.0 0.900 0.471 0.89 

xtxp021 0.388 14.0 8.0 0.763 0.117 0.73 

xtxp357 0.380 9.0 9.0 0.751 0.024 0.71 

SbKAKG1 0.383 14.0 9.0 0.758 0.107 0.73 

xgap001 0.282 15.0 7.0 0.812 0.234 0.79 

xtxp298 0.338 6.0 5.0 0.738 0.014 0.69 

Mean 0.324 15.8 9.2 0.784 0.200 0.76 
 

MAF- Major allele frequency; NG- number of genotypes; NA  - Total number of Alleles; He- GeneDiversity; Ho- Heterozygosity;  PIC-polymorphic 
information  content. 

 
 
 
(xtxp312) to 0.92 (xtxp211) and 0.014 (xtxp298) to 0.62 
(xtxp211), respectively. 

Higher polymorphism within the present Ethiopian 
landraces observed may be indication of the extensive 
and regular seed exchange farming system within 
farmers of Ethiopia (Mcguire, 2000). This form of seed 
migrations also adds allelic variations to landraces 
avoiding genetic drift. Thus, the observed rare alleles 
could be useful as an additional source of important 
agronomic traits. In fact, Sorghum, a genus having 
evolved across a wide range of environments in Africa, 
exhibits a great range of phenotypic diversity and 
numerous resistances to abiotic and biotic stresses 
(Dogget, 1965). It is cultivated in all regions of Ethiopia 
from 400 to 2500 masl. Hence, the wider agro-ecological 
diversity of Ethiopian climates from where the samples 
were collected and the presence of wider morphological 
variations observed within them might contribute to its 
genetic variations (Mcguire, 2000).  

Similar findings by Cuevas and Prom (2013), and to a 
certain extent Agrama and Tuinstra (2003) also reported 
average PIC values 0.78 and 0.622, respectively. 
However, the observed PIC value is higher than that of 
Geleta et al. (2006), Antoine et al. (2015) and Catherine 
et al. (2016) who reported 0.46, 0.33 and 0.49, 
respectively. This may be the result of low numbers of 
accessions considered in their studies and sample 
collections represented are from specific areas of agro-
ecologies. Although sorghum is considered as self-
pollinating species, cross-pollinations between sorghum 
landraces are believed to be as high as 7%, and can 
even reach 70% in certain races in particular 
environments. The observed high allelic frequencies 
could also arise from outcrossing within wild and weedy 
relatives (House, 1985; Dogget, 1965).  

AMOVA analysis 
 
Partitioning the total variation of 107 Ethiopian sorghum 
landraces using 12 SSR markers revealed the presence 
of 61.38 and 55.17% variations explained by individual 
differences within race and their ecological zones, 
respectively. In contrast, the variations among the two 
populations are very small (6.86% among races and 
12.9% among zones). A considerable amount of its total 
variation was recorded across the overall individual 
landraces that is 31.7% with a moderate degree of gene 
differentiation among racial populations in terms of allele 
frequencies, FST: 0.073 (Table 3). The moderate genetic 
differentiation among the present populations in terms of 
allele frequency also indicated the continuous exchange 
of genes between them. This finding also supports earlier 
studies by Cuevas and Prom (2013) who found genetic 
differentiation of 0.10 among 137 Ethiopian sorghum 
maintained at NPGS.  However, Ganapathy et al. (2012) 
reported high estimate of fixation index (FST=0.35, 
P=0.001) using 82 Indian genotypes.  

 
 
Cluster analysis and pairwise genetic dissimilarity 
 
Neighbor-joining analysis indicated four major clusters 
(Figures 2 and 3). The first cluster, representing the 
largest numbers of accessions of all races in scattered 
manner, formed two sub-clusters inside; one with mainly 
of caudatum and another uniformly intermixed race. The 
second cluster most uniquely contained mainly durra race 
(18/27, 67% of the total population representing the race) 
along with rare numbers of caudatum and durra-bicolor (3 
and 4). Exceptionally, no bicolor race clustered under this 
group, while only a single  guinea  represented.  Like  the  
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Table 3. Analysis of Molecular Variance (AMOVA) using 12 SSR markers by Alrequin ver 3.5.1.3. 
  

Components Source of variation d.f. 
Sum of 
squares 

Variance 
component 

Percentage 
variation 

Sorghum Races 

Among populations 4 31.93 0.22 6.86 

Among individuals within populations 102 500.81 1.95 61.38 

Within individuals 107 108.00 1.01 31.76 

 Total 213 664.76 3.18 - 

      

Ecological Zones 

Among populations 11 129.49 0.41 12.90 

Among individuals within populations 95 427.26 1.74 55.17 

Within individuals 107 108.00 1.01 31.93 

 Total 213 664.76 3.16 - 
 

*Average F-statistics across all loci becomes: Population_race, FIS: 0.66, FST: 0.07 and FIT: 0.68, and population_E/Zones, FIS: 0.63, FST: 
0.13 and FIT: 0.68, p-value=0.0001. 

 

 
 

 
 

Figure 2. Cluster analysis of 107 Ethiopian sorghum 
landraces (Green: race durra, accession 1-27; Red: 
caudatum, accession 28-54; Gray: durra-bicolor, 
accessions 55-80; Black: race guinea, accession 81-98; 
and Purple: race bicolor, accessions from S/N 99 to 107. 

 
 
 
first cluster, the third cluster also formed two sub-clusters 
and most intermediate durra-bicolor structured in one 
sub-cluster along with other race types. Under the final 
cluster 4, majority of race durra-bicolor contained along 
with a single caudatum and guinea race, and rare 
number (that is 4) of bicolor. RFLP analysis on 94 
accessions also reported the greatest amount of diversity 
within races bicolor and guinea when racially classified. 
They also reported the race bicolor appeared highly 
variable and did not form a specific group. Hence,  it  was 

believed to be distributed wherever sorghum is grown 
(Wang et al., 2013). The most unique and clustered race 
in PCoA, race durra, is abundant in Ethiopian and Sudan 
as well and Harlan and Wet (1972) also reported settlers 
in warm highlands of Ethiopia have used the durra 
sorghum as their foundation of their agricultural system 
almost 500 years ago. These may be the reason why 
durra-bicolor intermediate race were also abundant in the 
country. In addition, caudatum, a race being adapted to 
harsh  conditions,  are   found  most  commonly  in  areas  
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Figure 3. Dendogram for 107 Ethiopian landraces based on unweighted neighbor joining (Green: 
race durra, accession 1-27; Red: caudatum, accession 28-54; Gray: durra-bicolor, accessions 55-
80; Black: race guinea, accession 81-98; and Purple: race bicolor, accessions from S/N 99 to 
107). 

 
 
 
receiving 250 to 1,300 mm of rain annually (Stemler et 
al., 1977). The bicolor and guinea, representing the 
smallest parts of Ethiopian diversity, distributed evenly 
across all clusters except the bicolor race which did not 
form a group within durra race cluster. 

Matrix of pairwise genetic distance of the racial 
population relationships (Table 5) indicated the existence 
of the highest dissimilarity between race bicolor and durra 
(highest genetic distance, 0.19) while the lowest score 
was registered between intermediate durra-bicolor and 
guinea (0.06). Whereas, among populations of different 
ecological zones pairwise genetic distance ranged from 
0.0096 to 0.286 between West Wollega and Illubabor, 
and between Central and South Tigray and East Harerge, 
respectively. The least genetic distance between West 
Wollega and Illubabor (0.0096) may be due to the close 
proximity of the two zones where free seed exchange 
might occur. In contrast, the greatest dissimilarity (0.286) 
recorded were between central and south Tigray and 
east Harerghe zones (Table 4). 
 
 
CONCLUSION AND RECOMMENDATIONS 
 
In general, the racial classification among S. bicolor could 
be used for in-situ and ex-situ conservation and genetic 
dissimilarity with their respective agronomic 
characteristics favors the future crops germplasm breeding 

programs. In this regard, Ethiopian sorghum races were 
structured into four major clusters according to their racial 
difference except for race bicolor and guinea. Bicolor 
found being scattered within other groups. The greatest 
genetic distance found between bicolor and caudatum 
while between the Ethiopian zones, central and south 
Tigray and east Harerghe. There was also a huge 
variation observed among the populations of both racial 
classification and ecological zones (61.38 and 55.17%, 
respectively). The greater mean number of alleles per 
locus (9.2) and PIC value of 0.76 in the present study 
also indicate the presence of high genetic diversity 
among Ethiopian sorghum collections and the 
discriminatory power of the selected markers. There is 
also a moderate levels of genetic differentiation among 
races (FST= 0.07) and Ethiopian sorghum producing 
zones (FST=0.13). Hence, racial groups could also be 
used as representation of the germplasm collection along 
with the commonly known diverse agro-ecological and 
zonal collections and their adaptation zones.  

In line with the present study, the future research areas 
should include molecular studies along with the 
morphological components using markers linked to 
specific agronomic traits to enable the use of racial 
groupings within sorghums in its breeding areas. In 
addition, classification of the national sorghum 
germplasm collections according to their race was also 
needed since the Ethiopian landraces have been used as  
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Table 4. Population pairwise FSTs_according to E/Zones.  
  

Correlation 1 2 3 4 5 6 7 8 9 10 11 12 

1 0.000 
          

 

2 0.162 0.000 
         

 

3 0.169 0.255 0.000 
        

 

4 0.118 0.073 0.058 0.000 
       

 

5 0.230 0.258 0.180 0.140 0.000 
      

 

6 0.275 0.230 0.286 0.128 0.144 0.000 
     

 

7 0.244 0.243 0.136 0.109 0.156 0.222 0.000 
    

 

8 0.102 0.167 0.066 0.072 0.211 0.202 0.166 0.000 
   

 

9 0.124 0.221 0.157 0.126 0.254 0.230 0.200 0.010 0.000 
  

 

10 0.180 0.198 0.250 0.114 0.178 0.152 0.200 0.118 0.158 0.000 
 

 

11 0.136 0.123 0.096 0.099 0.203 0.212 0.168 0.081 0.099 0.136 0.000  

12 0.202 0.237 0.181 0.108 0.186 0.189 0.151 0.068 0.097 0.122 0.119 0.000 
 

Average gene diversity over loci:  0.587146 ± 0.321973 and numbers in bold were the highest and lowest distance scored. 1:N/Wello,  2:S/Wello,  
3:E/Harerge,  4:Metekel,  5:Gambella(Z1),   6:Cent_S/Tigray,  7:Jimma,  8:Illubabor,  9:W/Wellega,  10:N/Shewa,  11:Bench_Maji and 
12:E/Shewa. 

 
 
 

Table 5. Pairwise genetic dissimilarity among sorghum races (Distance method: Pairwise differences).  
 

Correlation Durra Caudatum Durra_bicolor Guinea Bicolor 

Durra -     

Caudatum 0.08609 -    

Durra_bicolor 0.05741 0.08787 -   

Guinea 0.07009 0.07734 0.05728 -  

Bicolor 0.18937 0.11858 0.07156 0.09562 - 
 

The bolded numbers show the highest and lowest genetic distance scored between races. 

 
 
 
the source of important traits. 
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Thanks to committed plant breeding researchers over the few decades, many problems associated with 
food supply and qualities have been improved. Food security is an exceptionally serious worldwide 
issue via world climate change, the increase in human population, and the use of plants for bioethanol 
production in current years. Improved tolerance to abiotic and biotic stress, resistance to herbicides, 
improved yield, and plants with wonderful nutritional value are essential goals of crop improvement. 
RNAi applications are the modern innovation that can assist in the solution for these issues. A natural 
protection mechanism against invading viruses, nucleic acids, and transposons non-coding RNAs 
(ncRNAs), are identified as effector molecules in RNA-mediated gene silencing and used in the genetic 
modification of crops. These ncRNAs are concerned with the regulation of growth, development, and 
response to stress at the transcriptional and translational levels. Improving crop yields is the final 
purpose of molecular plant breeding. ncRNAs, along with transfer RNAs (tRNAs) and ribosomal RNAs 
(rRNAs), as well as small non-coding RNAs (sncRNAs) and the long non-coding RNAs (lncRNAs), have 
been recognized as essential regulators of gene expression in plants in plant immunity and adaptation 
to abiotic and abiotic stages biotic stress. 
 
Key words: Crop improvement, long RNA, ncRNA, RNA interference, small RNA. 

 
 
INTRODUCTION 
 
The world population is growing rapidly; however, world 
food security is still threatened in recent years via climate 
change, the increase in human population and the use of 
plants for bioethanol production in recent years (FAO, 
2020). In addition, the future capacity to meet the world's 
food security needs has come to be unstable as the area 
of  arable   and   cultivated  land  continues  to  decrease. 

These issues and threats have led scientists to look for 
options to increase crop productivity. Proponents of new 
technologies, which include recombinant DNA, have a 
promise in current green transformation, with genetically 
engineered plants which include transgenes achieving 
focused traits (Wheeler and von Braun, 2013; Sang and 
Chanseok, 2016; Bader et al., 2020; Mezzetti et al., 2020).
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Non-coding RNAs refer to transcripts that no longer code 
for proteins; however play vital regulatory roles within the 
cell, which precludes the possibility of the production of 
exogenous protein products. Non-coding RNA can be a 
gene silencing phenomenon that involves sequence-
specific gene legislation encapsulated via double-
stranded RNA, resulting in inhibition of protein production 
(Zheng and Qu, 2015; Brant and Budak, 2018; Yan et al., 
2020, 2021). 

Some classes of regulatory ncRNAs especially regulate 
a single goal gene, while others modulate more than one 
gene at the genome-wide level via various molecular 
mechanisms. These cumulative consequences advise 
that regulatory ncRNAs may want to be possible goals for 
molecular plant breeding (Zhou and Luo, 2013). 

Non-coding RNAs are divided into functionally vital 
RNAs such as transfer RNA (tRNA), ribosomal RNA 
(rRNA), small non-coding RNAs, including Micro-RNAs 
(miRNAs), small interfering RNAs (siRNAs), piwi-
interacting RNAs (piRNAs), and the long non-coding 
RNAs (lncRNAs). Two lncRNAs that have been 
substantially studied are the X-inactivation-specific 
transcript (XIST) and the HOX-antisense-intergenic RNA 
(HOTAIR) (Renyi and Jiankang, 2014; Santosh et al., 
2014; Brant and Budak, 2018). 

Post-transcriptional gene silencing (PTGS) is mentioned 
in many organisms; fungi, animals, and plants (Zhou and 
Luo, 2013; Brant and Budak, 2018). These products are 
the result of non-coding dsRNA, the DICER or Dicer-like 
enzyme, which performs this cleavage. Small non-coding 
RNA consists of an RNA-induced silencing complex 
(RISC) and Argonaute proteins (AGOs). Drosha and 
Pasha are part of the microprocessor protein complex. 
Drosha and Dicer are RNase III enzymes, Pasha is a 
dsRNA-binding protein, while Argonauts are RNase H 
enzymes (Wilson and Doundna, 2013; Kamthan et al., 
2015; Brant and Budak, 2018). 

The goals of this review had been to discuss non-coding 
RNA and its use in plant improvement. The RNA 
interferences in the adaptation of plants to the 
environment serve the tolerance to abiotic stress and the 
plant protection towards biotic stress. The RNA 
interference increases the yield potential of plants, such 
as manipulating plant improvement and improving 
nutrition. They modulate a broad range of gene regulatory 
networks via regulating a specific subset of downstream 
genes that are closely associated to agricultural traits 
such as seed maturation, flower development, pathogen 
resistance, and other abiotic stress resistance. 
 
 
Natures of non-coding RNAs (ncRNAs) 
 
Ribosomal RNA (rRNA) 
 
Ribosomal RNA is the  most  abundant  small  non-coding  
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RNA molecule that is made up of 4-10% cellular RNA. 
They are translation machines in so far as they translate 
the genetic information into a corresponding polypeptide 
chain in a mRNA template-directed manner (Rodnina and 
Winter Meyer, 2011). The mRNA sequence starts with the 
begin codon of AUG and is followed by termination codon 
signaling for subsequent folding into its functional state 
(Crick, 1970). The ribosomes in eukaryotes are more 
complex than in prokaryotic ones; in general, ribosomes 
have three exclusive binding sites; A (aminoacyl) site, the 
P (peptidyl) site and the E (parent) site in the interface 
between the subunits. The mRNA that binds to the 30S 
subunit can regularly move one codon at a time during 
peptide elongation (Crick, 1970). 

The ribosomal RNA is about 60% by weight rRNA and 
40% by weight protein and additionally includes two most 
important rRNAs and 50 or more proteins. The 60S 
subunit incorporates (three rRNAs 5S, 5.8S, 28S and 
about forty proteins) and the 40S subunit contains (an18S 
rRNA and about 30 proteins). The LSU rRNA acts as a 
ribozyme and catalyzes the formation of peptide bonds 
(Anita et al., 2013). 
 
 
Transfer RNA (tRNA) 
 
Transfer RNA is the link between mRNA and the peptide 
sequence in transfer RNA (tRNA). There is an enzyme that 
can understand both tRNA and an anticodon, which is 
complementary to the mRNA codon associated to this 
amino acid, and couples it to a highly standardized free 
energy complex known as aminoacyl-tRNA at the rate of 
ATP hydrolysis (Sharp at el., 1985). The mRNA binds to 
the 40s ribosomal subunit, followed by using the binding of 
the initiator tRNA loaded with formylated methionine to the 
P site in a reaction step that is considerably accelerated by 
the three initiation factors. As soon as the mRNA and the 
initiator tRNA are successfully bound, the large 60S 
subunit binds to form an 80s initiation complex, releasing 
the eIF factors. With the mRNA in the correct reading 
frame, the initiator tRNA in the P-site and the empty A-site 
programmed with the first interior codon of the protein to 
be synthesized. The ribosome has now left the initiation 
phase and has entered the peptide elongation phase 
(Valle et al., 2003). 
 
 
Short non-coding RNAs 
 
Micro RNA (miRNA) 
 
Micro-RNA is the party of the small non-coding RNA (20-
22nt) with partially double-stranded stem loop structures, 
which regulates negative gene expression in both animals 
and plants. It is transcribed by the RNA polymerase II 
enzyme and, after transcription, cleaved by the Dicer-like 1  
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(DCL1) enzyme and transported into the cytoplasm and 
incorporated into the Argonaut (AGO) protein. Mature 
miRNA is produced in various processes and incorporated 
into the protein RISC (RNA-induced Stille complex). 
Mature single miRNA that incorporates the RISC protein 
binds with other complementary mRNA sequences to 
produce the protein (Khraiwesh et al., 2012). 
 
 
Small interfering RNA (siRNA) 
 
Small interfering RNAs are the parts of small non-
coding RNA that have the function of facilitating post-
transcriptional gene silencing (PTGS) by breaking 
down mRNA. Small interfering RNA is generated from 
RNA double strands that are nearly perfectly 
complementary and cleaved by DCL2, DCL3 and 
DCL4 to produce siRNA duplexes 22nt, 24nt and 21nt, 
respectively (Sang and Chanseok, 2016). The other 
cofactors of siRNA are the RNA-dependent RNA 
polymerases 2 and 6 (RDR2, RDR6), SUPPRESSOR 
OF GENE SILENCING 3 (SGS3) and the plant-
specific DNA-dependent RNA polymerases IV and V 
(Bologna and Voinnet, 2014). After the siRNAs have 
been cleaved by DCL, they are loaded into 
AGRONAUTS (AGOs) and companies with a 
complexing gene silence machinery called RISC (RNA 
Induced Silence Complex). The RISC recognizes the 
complementary sequence of mRNA and AGO-loaded 
small RNA (also known as 'guide RNA'), then RISC 
suppresses the target mRNA via a cleavage or 
transcription gene silencing (TGS) mechanism. Small, 
interfering RNA is naturally very important in the 
organism to protect it from various natural enemies. 
For example, RNA interference (RNAi) was seen as a 
natural defense mechanism that used exogenous 
siRNAs to protect organisms from viruses, but it soon 
became clear that endogenous siRNAs (endo-siRNAs) 
also play a role in regulating genomic functions 
(Kamthan et al., 2015). 
 
 
Piwi-interacting RNAs (piRNA) 
 
Piwi-interacting RNAs are small non-coding RNAs that 
have 20-31nt. The name, piRNA (Piwi-interacting RNA), 
reflects the fact that piRNAs bind to Piwi proteins under 
physiological conditions. Piwi-interacting RNAs were first 
discovered in Drosophila as repeat-associated siRNAs 
(rasiRNA), which show complementarities to a variety of 
transposable and repetitive elements (Minna et al., 2011). 

The main function of these RNA molecules involves 
chromatin regulation and suppression of transposon 
activity in germ-line and somatic cells. piRNAs are 
antisense to expressed transposons target and cleave 
the transposon in complexes with  piwi  proteins.  This  

 
 
 
 
cleavage generates additional piRNAs which target and 
cleave additional transposons. This cycle continues to 
produce an abundance of piRNAs and augment 
transposon silencing (Lindsay et al., 2013). 
 
 
Long non-coding RNA (lncRNA) 
 
LncRNAs are transcripts generally longer than 200nt 
having little or no potential of encoding proteins. Most 
of the lncRNAs have similar characteristics within the 
mRNA, transcribed by RNA polymerase II. In addition 
to RNA Pol II-derived lncRNAs, there are other 
classes of lncRNAs transcribed by two plant-specific 
DNA-dependent RNA polymerases, RNA Pol IV and RNA 
Pol V, which play critical roles in transcriptional gene 
silencing mediated by RNA-dependent DNA methylation 
(RdDM) (Sang and Chanseok, 2016). 

LncRNA can be divided based on genomic location; 
sense lncRNAs overlap with one or more exons of a 
transcript on the same strand; antisense lncRNAs 
overlap with one or more exons of a transcript on the 
opposite strand; intronic lncRNAs derive from an intron 
within another transcript; and intergenic lncRNAs occur 
in the interval between two genes on the same strand 
(Ma et al., 2013). 

Although only a small number of lncRNAs are identified 
and functionally investigated until now, plant lncRNAs 
play important roles as regulators in complex gene 
regulatory networks involved in plant development and 
stress management (Zhang et al., 2014). The human 
genome has only 3% of the coding region but more than 
85% of the genome is actively transcribed and the 
biggest challenge is the understanding of the functional 
role for these transcripts (Hangauer et al., 2013). 

The lncRNA regulates the expression levels of 
target genes ranging from transcription to translation. 
Some examples of their functions are lncRNA, called 
LDMAR (for long-day specific male-fertility-associated 
RNA), which regulates the photoperiod-sensitive male 
sterility of the rice variety whose pollen is completely 
sterile in a long-day condition. Genome-wide 
investigation on rice also identified a set of lncRNAs that 
are specifically expressed during the reproduction stage 
(Zhang et al., 2014). On the Flowering Locus C (FLC) in 
Arabidopsis, an antisense lncRNA, COOLAIR, and a 
sense lncRNA, COLD AIR, are produced during 
vernalization to form an epigenetic switch for 
silencing the expression of the FLC gene to promote 
flowering (Fatica and Bozzoni, 2014, Renyi and Jiankang, 
2014). 
 
 
APPLICATION OF RNAi IN CROP IMPROVEMENT 
 
Crop  yield  improvement is the ultimate goal of molecular  



 
 
 
 
 
crop breeding. There are multiple physiological traits 
influencing crop yield, and several studies have found 
ncRNAs and their target genes t o  b e  involved in 
those traits. Some physiological traits which influence 
crop yield are plant manipulation, abiotic stress, biotic 
stress, and improvement in fruit quality, quantity, and 
nutritional value. 
 
 
Plant architecture 
 
Biomass 
 
RNA interferences are one application that can improve 
the yield of crops and fruit vegetation via the manipulation 
of primary agronomic traits. It can increase the biomass 
of the crops and fruits by manipulation of plant height, 
prolonged vegetative segment and delayed flowering 
time, a number of branches or branching type, and 
measurement of the plants. 

RNA interference knocks down the OsDWARF4 gene 
in rice to limit the plant's erect leaf and growing the 
photosynthesis through reducing leaves. The yield of 
such plants is improved or increased via dense planting 
conditions (Feldmann, 2006). Over-expression of the 
maize MIR156, Corngrass1 (Cg1) gene (Chuck et al., 
2011), and red clover (Trifolium pratense L.) (Zheng et 
al., 2016) motives prolong the vegetative parts of maize 
and delayed flowering. This means that the reproductive 
stage is delayed, the vegetative parts are increased in 
size, and at the identical time, biomass of plants become 
increasing. 

Moderate and low ranges of miR156 expression had 
58–101% more biomass production than wild-type 
controls because of increases in tiller numbers in change 
grass plants. Over-expression of rice miR156 should 
improve the yield of solubilized sugar as properly as 
forage digestibility (Xie et al., 2012, Johnson, 2017), 
suspending the flowering time in the Arabidopsis 
(Roussin et al., 2020), and it can manipulate the white 
and lily flowering colors (Yamagishi and Sakai, 2020). 
 
 
Grain yield 
 
Improvements of the plants by way of special technology 
or techniques are mainly for increasing the yield of the 
crops. RNA interferences are one of the technologies 
which are used to improve the crop's yield by using 
manipulating traits. One of the functions of RNA 
interferences is the manipulation of the gene, which 
affects the characteristics of the crop whether to be 
increasing or reducing the crop yield. 

Regulatory ncRNAs influence the reproductive stage. It 
is a very important aspect that affects crop yield and is 
used for genomic  association.  According  to  Ding  et  al.  

Dekeba          443 
 
 
 
(2019), lncRNA, called LDMAR (for LONG-
DAYSPECIFIC MALE-FERTILITY-ASSOCIATED RNA), 
regulates the photoperiod sensitive male sterility of rice 
with absolutely sterile pollen in a long-day condition. 
Genome-wide investigation on rice additionally identified 
a set of lncRNAs that are particularly expressed during 
the reproduction stage (Zhang et al., 2014). 

The RNA mediates suppression of GA 20-oxidase 
(OsGA20ox2) gene which resulted in semi-dwarf plant life 
from a taller rice variety QX1. It increases panicle length, 
the quantity of seeds per panicle, and greater seed 
weight. OsSPL14 (Souamosa promoter binding protein-
like14) is the goal of Osa-miR156 in rice to increase the 
yield of the rice grain, reduced tiller number, and 
accelerated grain yield (Wang et al., 2012; Jiao et al., 

2010). Overexpression of Osa‐miR1873 also resulted in 
some defects in yield traits, which include grain numbers 
and seed putting rate in rice (Zhou et al., 2020). 
Overexpression of the OsAGO17 gene was once also 
found to be involved in increased grain size, weight, and 
promote stem development in rice (Zhong et al., 2020). 
 
 
Fruit improvement 
 
The application of transgenic protects crops from 
different pests that can affect the plant products. 
Genetic engineering can be applied to improve the 
composition and quality of the harvested organs to 
reduce post-harvest deterioration of fruits or increase 
agronomic quality and nutritional value. Fruits are 
consumed when fresh because they are very sensitive to 
pests and are perishable. RNA interference is the 
technology that can overcome this problem (Meli et 
al., 2010). 
 
 
Enhanced nutritional value and edibility 
 
RNA silencing-based technology has been used in 
improving the nutritional value of crops. By down-
regulating key genes in plant metabolic pathways usage 
of RNAi constructs, transgenic plants may also 
accumulate more favorable metabolites or produce fewer 
undesirable ingredients. Crops have exclusive nutritional 
values; some of them are allergens to human being, 
some pollutants to the environments, and some allergens 
to the different crops. But there are plants which have 
very essential nutritional values that are consumed by 
means of human beings or animals. RNA interference is 
to manipulate all these nutrients through adding the 
essential one and removing the unwanted ones. 

Tomato (Lycopersicon esculentum) is one of the most 
economically essential fruit plants throughout the world 
rich in antioxidants, minerals, fibers, and vitamins. RNAi 
has  been  utilized  in the development of tomato fruit with  
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an improved level of carotenoids and flavonoids which 
are especially beneficial for human health (Kamthan et 
al., 2015). 

RNAi approach has additionally been used in apple to 
improve the fruit quality via enhancing self-life and 
reducing the quantity of a major apple allergen, 
metabolites, and accumulation of sugars in the fruits 
through sorbitol synthesis, which impacts fruit starch 
accumulation (Romer et al., 2020) and sugar-acid 
stability (Teo et al., 2006). 

Some examples of nutrition adding plants through RNAi 
are high lysine maize for the expression of zein proteins 
(Li and Song, 2020; Choudhary et al., 2021), and 
silencing of carotenoid β-hydroxylases which increases 
the β-carotene content of maize (Berman et al., 2017). 

RNAi has also been used to down-regulate the starch-
branching enzyme resulting in high- amylose wheat, 
which has an amazing potential to improve human health 
(Man and Hong, 2013). Corn with increased essential 
amino acids (Hasan and Rima, 2021), improved soybean 
by using oil quality (Yang et al., 2018), and cotton with 
improved fatty acid composition have been developed 
with the use of RNAi. Overexpression of GmPDAT genes 
elevated seed size and oil content (Gao et al., 2020), 
whereas RNAi strains had reduced seed size and oil 
content of soybean (Liu et al., 2020). Suppression of 
three carotenoid-cleavage dioxygenase genes, OsCCD1, 
4a, and 4b, increases carotenoid content in rice (Ko et 
al., 2018). 
 
 
Enhanced shelf life 
 
The fundamental issues of fruits are post-harvest 
deterioration and spoilage. It is a main financial loss. This 
may be because of some issues like; technique of 
harvesting, transports, and storage. Therefore, an 
increase in the shelf life of vegetables and fruits through 
delayed ripening involves any other critical agronomic 
trait that is being addressed through non-coding RNA 
technology. Initiation of ripening in climacteric fruits like 
tomato is characterized through a climacteric burst of 
ethylene, resulting in the regulation of the expression of 
ripening-specific genes. Manipulating the gene which is 
accountable to produce ethylene and decrease the 
production of ethylene was once increasing the shelf life 
of tomato (Osorio et al., 2011). RNA interference 
decreases the expression of 1-aminocyclopropane-1-
carboxylate (ACC) oxidase, a gene of the ethylene 
biosynthesis pathway in tomato, and inhibited the 
ethylene production at the ripening time so that the fruit 
can survive a long time. 

RNA silencing used to be first genetically modified in 
the Flavr Savr tomato, bringing about the antisense of 
transcript polygalacturonase (PG) which is suppressed to 
PG expression. The polygalacturonase is accountable for  

 
 
 
 
cell wall degradation during tomato ripening. Suppression 
of polygalacturonase delayed the natural softening of 
tomatoes and allowed tomatoes to ripen on the vine for 
long and resulting in a greater flavorful fruit (Renyi and 
Jiankang, 2014). The increase in shelf life of tomatoes 
used to be observed after increasing abscisic acid (ABA) 

content. Manipulation of β‐carotene stages results in an 
enchantment that is no longer only limited to the shelf life 
of tomatoes, but also their nutritional value (Diretto et al., 
2020). 

Tomato fruits are considered to be climacteric and 
require the gaseous hormone ethylene to ripen. In every 
case, the change of the expression of the mi156 gene in 
tomatoes led to an increase in yield and shelf life (Zhang 
et al., 2011). Definitely, tomato has emerged as the pre-
eminent experimental model for studying fleshy fruit, 
which includes the developmental control of ripening, 
ethylene synthesis and perception. Overexpression of 
Pti4, Pti5, and Pti6 genes (Wang et al., 2021), and 
SlGRAS4 gene (Liu et al., 2021a) in tomato are very 
crucial to accelerated fruit ripening and elevated the 
complete carotenoid content. 

Non-coding RNA is especially primary within the 
increased shelf life of vegetables and fruits. Tobacco 
(Moreno et al., 2020), and tomatoes (Arefin et al., 2020), 
superoxide dismutase (SOD) genes expressed at some 
stage in the ripening of apple fruit (Lv et al., 2020), cold 
storage responses genes in the peach (Antonella et al., 
2020), blueberry cultivars with higher fruit firmness and 
longer shelf lifestyles (Liu et al., 2021), preserved post-
harvest shelf life and quality of banana fruit (Yumbya et 
al., 2021) have been developed using RNAi. RNAi 
method concentrated on suppression of more than one 
homolog would be much effective than the knockdown of 
a single homolog (Gupta et al., 2013). 
 
 
Seedless fruit development (Parthenocarpy) 
 
Parthenocarpy or seedless fruit improvement is a 
technique of fruit production from seedless crops by way 
of ovaries without pollination and fertilization. 
Parthenocarpy or seedlessness is a highly preferred 
agronomic trait, particularly in safe to eat fruit crops. It 
produces high yields in harsh environmental conditions, 
as no pollination or fertilization is required. Customers 
constantly want fresh fruit, while it is possible to produce 
the fruit at any time of the year. It produces excessive 
yields in harsh environmental conditions, as no pollination 
or fertilization is required. Customers continually want 
clean fruit, while it is possible to produce the fruit at any 
time of the year. 

In some cases, fruits produce hard seed which makes it 
difficult to overcome the dormancy of the seed, whereas 
others produce seeds with the difficult tests, as the 
absence of  seeds  can  also  be  a  positive  trait for both  



 
 
 
 
 
direct clean consumption (e.g. grape, citrus, and banana) 
and industrial approaches (e.g. frozen eggplants, and 
tomato sauce) (Meli et al., 2010). 

RNA interferers are one of the most essential primary 
technologies for overcoming the issues of vegetation with 
parthenocarpy. Some plants can move forward through 
RNAi innovation like; manipulation of auxin response 
factors8 (ARF8), which is the goal of miR167 to affect 
product from parthenocarpic fruits in each arabidopsis 
and tomatoes (Molesini, et al., 2012). Suppression of the 
orthologous genes of Pad-1 caused parthenocarpic fruit 
improvement in Solanaceae plants; hence, it is a very 
powerful tool in improving Solanaceae fruit production 
(Matsuo et al., 2020). 

The overexpression of the PbGA20ox2 gene modified 
the GA biosynthetic pathway and improved GA4 
synthesis, which promoted fruit set and parthenocarpic 
fruit improvement in pear fruits (Pyrus Bretschneider 
Rehd.) (Wang et al., 2020a). The PpIAA19 gene used to 
be concerned in the regulation of lateral root number, 
stem elongation, parthenocarpy, and fruit structure of 
tomatoes (Ding et al., 2019) and grapevines (Wang et al., 
2020a). The overexpression of the MaTPD1A gene in 
banana plants produces seedless fruits in contrast to 
wild-type plants (Hu et al., 2020). 
 
 
Biotic stress resistance 
 
Phyto-pathogens are disease causing agents that can 
affect crops and crop products. The disease may affect 
the crop at different stages, seedling, vegetative, and 
at productive stages. RNAi strategies have been 
employed to improve the small RNA-mediated crop 
improvement defense mechanism in crop plants against 
various biotic stresses including an attack by viruses, 
bacteria, fungi, nematodes, and insects (Park and Shin, 
2015). 
 
 
Virus resistance 
 
Viruses are pathogens that can influence crop products. 
RNA interference is one of the technologies which can 
overcome their effect. The functions of RNA interferences 
are protection mechanism of virus that invades nucleic 
acid molecules. Transgenic plant technology has been 
used to express genes encoding viral coat proteins in 
transgenic plants and can be resistant to viruses 
containing the coat proteins. The virus resistance was 
primarily based on the recognition of coat proteins 
through the transgenic plant cells and therefore on the 
plant immune response against the coat proteins. 
However, for understanding the application of genetic 
transformation technology, the plants can express the 
coat protein gene transcript and damage the protein coat;  
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however, it cannot produce the protein that acts against 
the protein coat itself. Transgenic plants that are resistant 
to viruses have been produced by way of sense 
transgene-triggered RNAi against the viral RNAs (Ding, 
2010; Renyi and Jian-Kang, 2014; Bahadur et al., 2015; 
Uslu and Wassenegger, 2020). 

RNAi has shown a way to keep virus-resistant traits in 
many crops. The transgenic plant can produce the viral 
sequences that match coat proteins, replication-
associated proteins, ATPases, or promoter areas in the 
viral genomes that can derive transgenic siRNAs to goal 
viral RNAs for degradation upon infection. Plants 
reportedly consisting of virus resistance included some 
suggested crops like papaya (Kertbundit et al., 2007), 
cassava (Vanitharani et al., 2004; Vanderschuren et al., 
2012) and potato (Sajid et al., 2019). Some examples are 
potato resistance to spindle tuber viroid (PSTVd) and 
cassava resistance to African Cassava Mosaic Virus 
(ACMV) (Renyi and Jiankang, 2014). The virus 
prevention strategies are based totally on the ecological 
implication that increased carbon dioxide concentrations 
minimize the accumulation of the cucumber mosaic virus 
in Nicotiana tabacum through the viral suppressor of the 
RNAi (VSR) 2b protein of CMV (Guo et al., 2021). 
 
 
Bacterial resistance 
 
Bacterial diseases are extremely hard to manage due to 
the high rate of production of the spread. The multiplication 
rates of microorganism are very excessive in contrast to 
plant production, due to which, it can effortlessly manage 
plant development. RNA interference application 
technologies are used in various facilities to resist bacterial 
diseases. Some plants that can withstand RNA 
interference are; In Arabidopsis, it was reported that 
miR393 is caused through a bacterial pattern-associated 
molecular pattern (PAMP) peptide flg22 and negatively 
regulates the F-box auxin receptors TIR1, AFB2, and 
AFB3. This suppression of auxin signaling contributed 
positively to the predicament of bacterial infection 
(Pseudomonas syringae) (Li et al., 2010; Zhang et al., 
2011a). The other application RNAi mediated the 
suppression of two genes from Agrobacterium tumefaciens 
that are involved in the formation of crown gall tumors 
(iaaM and ipt), which could appreciably minimize tumor 
production in Arabidopsis (Kamthan et al., 2015). 

Overexpression of the rice chorismate mutase (OsCM) 
gene modified the downstream pathway of the aromatic 
amino acids, whereby the stress of bacterial leaf rot (BLB) 
was weakened through changing stress-sensitive genes 
and hormonal accumulation (Jan et al., 2020). Some of the 
well-reported plants that showed bacteria can be resisted 
through manipulating RNAi genes include tomatoes (Bento 
et al., 2020), citrus (Yu and Killiny, 2020), soybean (Tian et 
al., 2020), and Arabidopsis (Guo et al., 2020). 
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Fungal resistance 
 
Genetic engineering based on RNA silencing has made a 
primary contribution to improving crops, that is, 
resistance to pathogens. Fungus is a pathogen that can 
affect plant production and quality. RNAi has been 
confirmed to be an essential strategy for producing 
tolerance in various crops (Kamthan et al., 2015). 

RNA interference is done in response to fungal attack 
in wheat Blumeria graminis f. Sp. tritici (Bgt) through the 
use of the 24 miRNAs gene that causes devastating 
diseases of wheat powdery mildew (Xin et al., 2010). 
Transgenic overexpression of rice plants through OSA-
miR7695 (Campo et al., 2013), miR160a or miR398b (Li 
et al., 2014), miR169 (Li et al., 2017) and OsamiR167d 
(Zhao et al., 2020) has been negatively regulated as a 
response to the blast fungus Magnaportheoryzae, and 
through overexpression of these genes, an improved 
resistance against rice blast infections was achieved. 

Treating of the Fusarium species with various dsRNAs 
that concentrated on the genes was destructive to the 
fungus and leads to determination of an extended growth 
in in vitro cultures (Koch et al., 2018). In the reduction of 
the Arabidopsis thaliana line, it was observed that the 
activity of miR396 confers resistance to necrotrophic and 
hemibiotrophic fungal pathogens using artificial miRNA 
goal mimetics (Soto-Suárez et al., 2017). Overexpression 
of the BnaNPR1 gene in oilseed rape played a high-
quality role in the resistance of Brassica napus to 
Sclerotinia sclerotiorum, which confers resistance to this 
pathogen (Wang et al., 2020b). 
 
 
Insect and resistance 
 
Defoliation of plants or sucking out their sap insects 
can cause great damage to plants by slowing, 
weakening, and sometimes killing their increase 
(Bahadur et al., 2015). The use of RNAi has been 
confirmed to be an essential approach for developing 
tolerance in various plants. Insect-resistant plants 
produce the dsRNA that attacks the insects, and 
when insects ingest, the gene expresses itself 
(Huvenne and Smagghe, 2010). 

This technology is intended to protect insects from 
various kinds of plant production; among others, the 
western corn rootworm Diabrotica virgifera, the cotton 
bollworm Helicoverpa armigera, and the tobacco hawk 
Manduca sexta (Renyi and Jian-kang, 2014). 
Transgenic tobacco lines expressing dsRNA of v-
ATPase and leading to whitefly mortality rate (Thakur 
et al., 2014) transcript level of goal genes in Bemisia 
tabaci at more than 70% mortality was observed 
(Raza et al., 2016; Shelby et al., 2020). 

The knockdown of CsKrh1 mediated through RNA 
interference substantially decreased the  transcription  

 
 
 
 
of vitellogenesis (Vg) within C. suppressalis, which is 
extremely essential in the suppression of rice pests 
(Tang et al., 2020). For pest management in the field 
through topical application or spraying, dsRNA shows 
a very high potential, with soybean aphids Aphis 
glycines (Yan et al., 2020a) mortality of up to 81.67% 
and with soybean Nezara viridula mortality of up to 
90% recorded (Sharma et al., 2021). 
 
 
Abiotic stress tolerance 
 
Plant growth in the field can be exposed to several abiotic 
stresses, such as: drought, salt, heat and cold. RNA 
silencing coding is one of the technologies that can 
overcome this problem, the abiotic stress of plant 
products. By regulating the endogenous level of 
regulatory ncRNAs in response to abiotic stress, they 
regulate the expression of their target genes, which are 
closely involved in specific or multiple stresses. 
 
 
Drought and salinity tolerance 
 
Lack of water or drought and salinity are the abiotic 
stresses that are the main environmental stresses that 
restricts crop productivity. RNA silencing coding has been 
used successfully to enhance drought and salt tolerance 
cultures. RNA interference is used in oilseed rape to 
supply the AtHPR1 promoter, which is resistant to seed 
break-off during drought-induced flowering, besides 
affecting yield in drought stress. Transgenic rice plants 
that are drought stress-tolerant have been developed 
such as the receptor for activated C-kinase1 (RACK1) (Li 
et al., 2009), knockdown of a RING finger E3 ligase gene 
OsDSG1, and also silencing OsDIS1 for the drought-
induced SINA protein through Oryza sativa (Park et al., 
2010). 

A wide variety of miRNAs has been recognized in 
Brassica that responds to drought, high salinity, and 
stress at high temperatures. Of 126 newly recognized 
miRNAs, miR164, miR160, and miR156 were 
experimentally approved to goal NAC domain-containing 
proteins, ARF17-like, and SPL2-like proteins, respectively 
(Bhardwaj et al., 2014). 

However, the RNA interference has also regulated the 
gene to respond in an identical way to the salinity 
tolerance plants. The overexpression of GmNFYA3 in 
Arabidopsis led to an increased sensitivity to salinity 
stress, and exogenous ABA (Ni et al., 2013) as well as 
transgenic creeping bentgrass (Agrostis stolonifera) 
plants that overexpressed a rice miR319 gene 
(OsamiR319) also confirmed an increased tolerance to 
drought and salinity related with increased leaf wax 
content and water retention; however, there was 
decreased  sodium  intake   (Zhou   and   Luo,   2013).  In  



 
 
 
 
 
tomato, overexpression of the miR169c gene led to a 
reduction in stoma openings, the transpiration rate, and 
the loss of leaf water, which improved the drought 
tolerance in transgenic plants compared to wild-type 
controls (Zhang et al., 2011a). Accordingly, a knockdown 
of the OsTBP2.2 gene was generated in rice in order to 
increase rice sensitivity to drought stress (Zhang et al., 
2020). 
 
 
Cold and heat stress tolerance 
 
Cold and heat are the abiotic types of stress that can 
influence plant production. With the variable conditions, 
the plants are pale; also, the yield and quality of plant 
products decrease and additionally affects the financial 
loss. Transgenic plants that use RNA silencing coding 
can overcome the problem of this stress. It has been 
suggested that miR319 expression changes in response 
to cold stress in Arabidopsis, rice, and sugar cane (Lv et 
al., 2020). 

The overexpression of the Osa miR319 gene led to 
increased cold stress tolerance (4C) after cold 
acclimatization (12C) of plants (Yang et al., 2013). In rice, 
the overexpression of OsPCF5 and OsTCP21 led to the 
production of the cold-resistant transgenic plant (Yang et 
al., 2013). 

Guan et al. (2013) observed a new kind of plant 
thermotolerance mechanism, in particular to protect the 
reproductive organs. It includes the induction of miR398 
to downregulate its goal genes CSD (copper / zinc 
superoxide dismutase), CSD1 and CSD2, and CCS (a 
gene that codes for copper chaperones for CSD1 and 
CSD2). They observed that csd1, csd2 and ccsmutanten 
showed a higher heat stress tolerance than wild-type 
plants, combined with an increased accumulation of heat 
stress transcription factors and heat shock proteins as 
well as much less damage to plants (Guan et al., 2013). 
Corn (Yu et al., 2018) and cassava (Suksamran et al., 
2020) responds to abiotic stress such as heat, cold, salt, 
and drought. 
 
 
CONCLUSION 
 
One of the basic requirements of a human being is 
food. However, food insecurity and malnutrition are 
currently among the most serious concerns for human 
health, causing the loss of countless lives in developing 
countries. Therefore, there is need for an innovative 
technology to improve upon our crop production methods 
and practices. RNA silencing gene is an advanced 
application that can solve the agricultural problem in a 
short period. In crop improvement, it has a wider 
application in the production of transgenic plants, which 
have   improved   yield,   increased    nutritional   qualities  
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with improved taste, texture or appearance, and health 
benefits. It also enables us to produce plants that have 
reduced dependence on fertilizers, pesticides, and other 
agrochemicals, and plants which have reduced the 
vulnerability of crops to environmental stresses. RNA 
interference applications are innovative technologies that 
can contribute to the solution to these problems. It 
describes several mechanistically related pathways which 
are involved in controlling and regulating gene 
expression. RNA silencing pathways are associated with 
the regulatory activity of non-coding RNAs that function 
as factors involved in inactivating homologous 
sequences, promoting endonuclease activity, translational 
arrest, and/or chromatic or DNA modification. It also has 
some limitations which include identification of 
appropriate target genes, off-target effects, and the 
application of RNAi is more sophisticated and needs 
highly skilled human power. 
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Hormesis is a biphasic dose (concentration)-response phenomenon characterized by low dose 
stimulatory and high dose inhibitory effects exerted by stressors on living organisms. Recently, there 
has been increased interest in the phenomenon and statistical models for its exploration in 
toxicological studies. The bilogistic model of Beckon et al. is one of such models for modeling biphasic 
dose-response relationships in toxicological studies. However, there is no explicit formula for the 
estimation of effective doses (EDK) with the model. In this study, a simple general approach was 
suggested to reparameterize the model, leading to a range of mathematical models for determination of 
effective doses at both stimulatory and inhibitory ranges in inverted U-shaped hormetic dose-response 
relationships. The reparameterized models were tested on experimental data from three different in 
vitro experimental systems obtained from literature and our experiment. They were successfully applied 
to test for significance of hormesis and estimate effective doses and their statistical properties. In 
addition, reparameterization of the model for a particular effective dose (EDK) did not affect estimation 
of other parameters (such as x1, x2, β1, β2 and M). The reparameterized models provided useful tools for 
adequate exploration of the tested hormetic dose-response relationships. The extended models could 
hopefully be versatile in characterization of variable hormetic dose response relationships in many 
toxicological disciplines.  
 
Key words: Toxicity, hormesis, hormesis quantities, model extension, concentration-responses. 

 
 
INTRODUCTION 
 
Hormesis is a dose-response relationship characterized 
by a low dose stimulation and high dose toxicity of a 
stressor. This phenomenon has been reawakened after a 
long period of marginalization and controversies. Hormesis 

has been reported to be generalizable, occurring in all 
forms of organisms for many endpoints and induced by 
physical and chemical agents including heavy metals, 
herbicides, phenols, parthenin,  perfluorinated  carboxylic             
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Figure 1. The Brain and Cousens model (Equation 1) with arbitrary values to show effects of f parameter (a), b 
parameter (b) and e parameter (c) on the curves. The common parameter values are: c = 0.0, d = 1.0. For a, b= 3.5, e = 
0.02; for b, f = 70, e = 0.02 and for c, b = 3.5, f = 70. 

 
 
 
acids, antibiotics, mycotoxins, bacteriocins and ionic 
liquids (Mulkiewicz et al., 2007; Shen et al., 2009; Belz 
and Cedergreen, 2010; Migliore et al., 2010; Murado and 
Vázquez, 2010; Belz et al., 2011; Wang et al., 2011; Li et 
al., 2014; Wang et al., 2014; Nweke et al., 2015). 
Hormesis has attracted a renewed interest among 
toxicologists, resulting in the development of new tools to 
study and accumulate scientific reports on the 
phenomenon. Thus, there has been a growing interest in 
statistical models to study hormetic dose-response 
relationships. 

The literature contains a wide range of statistical 
models for characterizing hormetic dose-response 
relationships. The applications of these models in 
toxicological studies with emphasis on their strengths and 
weaknesses were reviewed by Nweke and Ogbonna 
(2017). The Brain-Cousens model (Equation 1) derived 
from the general monotonic log-logistic equation is one of 
the earliest and well-known dose-response models 
enabling hormesis (Brain and Cousens, 1989). 
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In Equation 1, y is the response, x is the dose 
(concentration), d represents the mean response of the 
untreated control, c is the response at infinite dose, f 
measures the rate of stimulation of the response at low 
dose (f > 0 is a necessary condition for the presence of 
hormesis), e and b lost their interpretations as the ED50 
and relative slope at ED50, respectively and thus have no 
straightforward biological meaning (Schabenberger et al., 
1999; Cedergreen et al., 2005). The influences of 
parameters f, e and  b  on  the  shape  of  the  curves  are 

shown in Figure 1. Notably, if the value of f is negative, 
the curve has a valley instead of a peak (Figure 1a). 

Although the Brain-Cousens model has been used to 
describe hormetic dose-response relationships in 
toxicological studies, it has some drawbacks. The value 
of b in the model is restricted to greater than 1. At b < 1 
the model does not produce any dose-response curve 
(Figure 1b) (Cedergreen et al., 2005). Thus, the model 
cannot describe shallow dose-response curves. The 
Brain-Cousens model is also less suitable for data 
exhibiting a broad hormetic dose range and/or an early 
increase in response at low dose (Belz and Piepho, 
2012). In the Brain-Cousens model, the switching 
function for describing hormesis is linear and curve 
increases progressively from d. Thus, the model cannot 
describe the initial “no-effect” and pre-stimulation toxicity 
at low doses (Belz and Piepho, 2012; Beckon et al., 
2008). In addition, the Brain-Cousens model has no 
explicit expression for the ED50 and other effective doses. 
In order to solve this problem, the model was 
reparameterized to include ED50 and other effective 
doses as parameters in the model (Van Ewijk and 
Hoekstra, 1993; Schabenberger et al., 1999). The 
reparameterizations of Brain-Cousens model by 
Schabenberger et al. (1999) for determination of effective 
doses (EDK) and dose of maximum stimulation (M) are 
shown in Equations 2 and 3, respectively. 
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where K is the percentage inhibition and EDK is the dose 
of the effecter that elicited K inhibition of the response 
(such that K = 50 for ED50, K = -10 for ED-10 and K = 0 for 
LDS).  

These reparameterized models are used in toxicological 
studies to estimate the effective doses and their statistical 
properties (Nweke et al., 2015, 2016; Schabenberger et 
al., 1999; Zelaya and Owen, 2005; Zou et al., 2013). 

Due to the inadequacies of the Brain-Cousens model, 
Cedergreen et al. (2005) modified the model to introduce 
a six-parameter version (Equation 4). 
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In Equation 4, f is the hormesis parameter (f > 0 as a 
necessary condition for hormesis), parameters  c and d 
are defined as in Equation 1, while parameters α, b and e 
have no straightforward biological interpretation 
(Cedergreen et al., 2005). A reparameterization of 
Cedergreen-Ritz-Streibig model could be used for 
estimation of effective doses (EDK) and dose (M) at which 
maximum stimulation occurred by replacement of 
parameter f with the functions shown in Equations 5 and 
6, respectively.  
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According to Cedergreen et al. (2005), the model is more 
robust in terms of variation of data and describing both 
very large and relatively small hormetic effects when 
compared to the Brain-Cousens model. The Cedergreen-
Ritz-Streibig model could better describe data sets 
characterized by early increase in response at low dose 
and a broad hormetic dose range (Belz and Piepho, 
2012). In addition, the model is more flexible than the 
Brain-Cousens model to describe dose-response 
relationships where there is toxicity before the initiation of 
stimulatory response. Belz and Piepho (2012) compared 
the utility of Brain-Cousens and Cedergreen-Ritz-Streibig 
models in describing the hormetic response of four plants  
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to fifteen chemical stressors and affirmed that the diverse 
hormetic dose responses cannot be described by a single 
model. Some hormetic dose-responses were better 
described by either Brain-Cousens model or Cedergreen-
Ritz-Streibig model. Interestingly, the data set describing 
the phytotoxic effect of 2-phenylethyl-isothiocyanate on 
root growth of Amaranthus hybridus could neither be 
appropriately fitted by the Cedergreen-Ritz-Streibig 
model nor the Brain-Cousens model (Belz and Piepho, 
2012). The improved flexibility of Cedergreen-Ritz-
Streibig model was attributed to the introduction of the 
parameter α (Zhu et al., 2013). Nevertheless, the value of 
α has to be fixed when the available data is not enough to 
determine the rate of increase statistically. In order to 
allow for explicit determination of effective doses and 
their statistical properties, Belz and Piepho (2012) 
reparameterized the original equation. The Cedergreen-
Ritz-Streibig model has been widely used to especially 
describe herbicide hormesis in plants (Cedergreen et al., 
2007; 2009; Cedergreen and Olesen, 2010; Belz and 
Leberle, 2012).  

Another model proposed for description of hormetic 
dose-response relationships is the bilogistic model 
(Equation 7) of Beckon et al. (2008). 
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In Equation 7, parameters d and c are as defined in 
Equation 1 and the parameter Max is the theoretical 
maximum (not ymax) that would be approached 
asymptotically by the rising component of the equation in 
the absence of the descending component (or vice 
versa), β1 represents the rising slope (+), x1 is the dose at 
midpoint of the rising curve, β2 represents the falling 
slope (-), x2 is the dose at midpoint of the falling curve. 
The bilogistic model plotted with arbitrary values of the 
parameters is as shown in Figure 2. The bilogistic model 
can be viewed as a modification of the Brain-Cousens 
model, by introduction of a logistic weighting function at 
hormesis region which describes the rising curve of the 
dose-response model. The model reduces to log-logistic 
model if any of the slope parameters is zero, thus 
allowing simple statistical test for hormesis. The bilogistic 
model provided better description of hormetic dose-
response relationships than the Brain-Cousens model 
when tested with empirical data (Beckon et al., 2008). 
The parameter Max is only a theoretical maximum and 
not the actual maximum effect that would be approached 
by the upslope in the absence of the downslope. 
Therefore, there is disagreement between the fitted Max 
and its corresponding theoretical interpretation. This 
limitation  has  been  highlighted  by Zhu et al. (2013) and  



454          Afr. J. Biotechnol. 
 
 
 

0 500 1000 1500 2000 2500 3000

R
es

po
ns

e

0

20

40

60

80

100

120

140

d = 100

c = 4
ED50LDSM



 = -8

Dose

0 500 1000 1500 2000 2500 3000

R
es

po
ns

e

0

20

40

60

80

100

120

140

x1 = 300

x2 = 1350

Max Max = 132

ED-10

 
 
Figure 2. Arbitrary hormesis curve from the bilogistic model of 
Beckon et al. (2008) for c = 4, d = 100, Max = 132 (Max ≠ 
Maximum y), x1 = 300, β1 = 2, x2= 1350 and β2 = -8 showing x 
at maximum response (M), the limiting dose for stimulation 
(LDS), ED-10 and ED50 for an inverted U-shaped hormetic dose 
response curve.   

 
 

 
the model was therefore adjudged as inappropriate for 
describing hormetic data in their study. However, they 
acknowledged that the bilogistic model is statistically 
sound and performed better than the Brain-Cousens and 
Cedergreen-Ritz-Streibig models with respect to the data 
under review. 

The bilogistic model comprises one logistic ascending 
curve and one logistic descending curve similar to the 
descending curve of Brain-Cousens and Cedergreen-
Ritz-Streibig models. Thus, the model is particularly 
suited for hormetic data having logistic dose-response 
relationship at low doses.  In addition, the bilogistic model 
provides considerable improvements when modeling data 
that include a wide range of doses from well below to well 
above the dose corresponding to maximum response 
(Beckon et al., 2008). The bilogistic model, like the 
original    Brain-Cousens   and   Cedergreen-Ritz-Streibig  

 
 
 
 
models, has no explicit parameter for the effective doses. 
The Brain-Cousens and Cedergreen-Ritz-Streibig models 
have been extended to allow estimation of effective 
doses (Van Ewijk and Hoekstra, 1993; Schabenberger et 
al., 1999; Belz and Piepho, 2012). However, there has been 
no similar extension of the bilogistic model. According to 
Zhu et al. (2013), mathematical manipulation is not suitable 
for the bilogistic model because of its complexity and 

multiparametric nature. Reparameterization of models for 
the purpose of estimating effective doses has been 
discouraged to promote the use of bisection method 
based on monotone functions (Cedergreen et al., 2005; 
Zhu et al., 2013). Nonetheless, the computation of effective 
doses and their standard errors by a combined application 
of bisection and delta methods has its limitations. Applying 
the delta method, Cedergreen et al. (2005) could not 
estimate the limiting dose of stimulation (LDS) which is 
the dose at which hormesis vanishes (ED0). In addition, 
the dose for maximum stimulation (M) was obtained 
without standard errors and confidence intervals. Thus, 
use of reparameterized function can be a more 
convenient tool for estimating effective doses in biphasic 
dose-responses. Reparameterization of the Cegergreen-
Ritz-Sreibig model has been shown to be applicable to 

calculation of arbitrary effective doses at both stimulatory 
and inhibitory ranges (Belz and Piepho, 2012, 2015). 

A wide range of hormetic dose-response patterns 
which cannot be described by a particular hormesis 
model are usually generated in toxicological studies. 
Each model has its own strengths and weaknesses. 
Therefore, application of a specific model is dependent 
on the uniqueness of the data under analysis. The 
bilogistic model has been shown to be superior to Brain-
Cousens and Cedergreen-Ritz-Streibig models in 
modeling some hormetic dose-responses (Beckon et al., 
2008; Belz and Piepho, 2012). Undoubtedly, the model 
presents an additional statistical tool for the analysis of 
biphasic dose-response relationships where other models 
may fail. It is therefore important to reparameterize the 
model for determination of effective doses and hormesis 
quantities. This would present expanded possibilities and 
help to get rid of the bias inherent in using other models 
for a specific dose-response pattern where the bilogistic 
model will be more appropriate. Hence, the purpose of 
the present work was to provide a general method for 
reparameterization of the bilogistic model to allow for the 
estimation of effective doses (EDK) at both stimulatory 
and inhibitory ranges and the dose at which maximum 
stimulation occurred (M). Using hormetic dose-responses 
for illustration, the modeling approach was applied to 
characterize inverted U-shaped curves.  
 
 
MATERIALS AND METHODS 
 
Reparameterizations 
 
The  bilogistic  hormesis  model  (Beckon  et  al.,   2008)   does  not  



 
 
 
 
include any effective dose as a parameter in its original form. Thus, 
this study extended the model to generate other functions that 
expressed it in terms of parameters that correspond to the effective 
doses of dose-response relationships. The bilogistic model was 
reparameterized to incorporate the arbitrary effective doses (EDK 
including ED-10 [K= -10}, ED50 [K= 50] and ED0 [K = 0] also called 
LDS) and the dose at which the maximum stimulatory effect 
occurred (M) by applying the defining relationship described by 
Schabenberger et al. (1999). 
 
 
Reparameterization for EDK  
 
The defining relationship for an arbitrary effective dose (EDK) for K 
% inhibition of response is: 
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Solving Equation 8 for Max, a general expression for EDK (Equation 
9) was obtained, which can be used to determine any arbitrary EDK 
by substituting Max into Equation 7. 
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Rewriting Equation 9 for ED-10 (K = -10 representing the 
concentration that elicited 10% stimulation and -10% inhibition. In 
inverted U-shaped curves, it is also the value of x at y =110% of 
control), LDS (K = 0) and ED50 (K = 50), Equations 10, 11 and 12, 
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respectively were obtained. 
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Substituting Max (in Equations 10 to 12) into the original bilogistic 
model (Equation 7), leads to extended functions allowing for 
hormesis and in which ED-10, LDS, and ED50 can be incorporated. 
 
 
Reparameterization for M 
 
In order to obtain the expression for the dose M, at which maximum 
stimulatory effect occurred, Equation 7 was differentiated with 
respect to x to obtain the first derivative of the function. In order to 
achieve this, Equation 7 was first simplified as Equation 13 and 
differentiated with respect to x. 
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Table 1. Syntax for reparameterization of Beckon et al. (2008) model for estimation of arbitrary effective doses. 
 

Effective  
doses 

Parameter to 
be replaceda 

Model expression y[x]= c+(((d-c)+((Max-d)/(1+((x1/x)^β1))))/( 1+((x2/x)^β2))) 

ED-10 max = (((d-c)*(0.1+(1.1*(( x2/ED-10)^β2))))*(1+(( x1/ED-10)^β1)))+d 
LDS max = ((d-c)*((x2/LDS)^β2)*(1+((x1/LDS)^β1)))+d 
ED50 max = (0.5*(d-c)*(((x2/ED50)^β2)-1)*(1+((x1/ED50)^β1)))+d 
   

M max = 

(((1+((x1/M)^β1)+((x2/M)^β2)+((x1/M)^β1)*((x2/M)^β2))*((c*(x2^β2)*β2*(M^(-β2-1)))+(c*(x1^β1)*(x2^ 
β2)*(β1+β2)*(M^(-β1-β2-1)))+(d*(x1^β1)*(M^(-β1-1)))))-
(((c*((x2/M)^β2))+(c*((x1/M)^β1)*((x2/M)^β2))+(d*((x1/M)^β1)))*(((x1^β1)*β1*(M^(-β1-1)))+((x2^β2)* 
β2*(M^(-β2-1)))+((x1^β1)*(x2^β2)*(β1+β2)*(M^(-β1- β2-1))))))/(((x1^β1)*β1*(M^(-β1-1)))+((x2^β2)* 
β2*(M^(-β2-1)))+((x1^β1)*(x2^β2)*(β1+β2)*(M^(-β1- β2-1)))) 

 
aParameter max to be replaced in the model expression, LDS = limited dose for stimulation, ED50 = effective dose (50%), ED-10 = effective dose (-
10%); M = maximum stimulatory dose. 
 
 
 
The first derivative of the function must equal zero at maximum 
stimulation (x=M). Thus, the defining relationship as shown in 
Equation 14 was obtained. Solving Equation 14 for Max gives 
Equation 15. By substituting Max (in Equation 15) into Equation 7, a 
7-parameter hormesis dose-response model for the incorporation of 
M into the bilogistic model was obtained. Although these models 
appear complex, they can easily be coded into a nonlinear 
regression package using syntaxes shown in Table 1.  
 
 
The hormesis data 
 
Three sets of hormetic dose-response data from three different 
experimental systems were used in this study to evaluate the 
original and the reparameterized models. The dose-response data 
include: (1) the biphasic effects of penicillin on growth of 
Staphylococcus species (Beckon et al., 2008). The growth of 
Staphylococcus sp. at different concentrations of penicillin was 
transformed relative to the control response (% of control) as 
described by Nweke and Ogbonna (2017), (2) the biphasic effects 
of 1-hexyl-3-methyl-imidazolium chloride ([HMIM]Cl) on firefly 
luciferase activity after 15-min exposure (Zhu et al., 2013). The 
relative luminescence units (RLUs) of the luciferase exposed to 
[HMIM]Cl were measured with SpectraMax M5 microplate reader 
(Molecular Devices Inc., USA) with a 96-well microplate (Zhu et al., 
2013). The data were transformed to percent inhibition by 
multiplying the relative ratios by 100 and then converted to an 
inverted U-shaped dose-response relationship (% of control) by 
subtracting the percent inhibition from 100 as described elsewhere 
(Nweke and Ogbonna, 2017) and (3) the biphasic effects of 4-
chlorophenol (4-CP) on Providencia vermicola dehydrogenase 
activity. The assay was based on reduction of 2,3,5-
triphenyltetrazolium chloride to triphenyl formazan in response to 
varying concentrations of 4-CP. The data were generated in our 
laboratory using 24-h dehydrogenase activity assay as described 
by Nweke et al. (2014). The concentration-effect data were 
transformed relative to control as described by Nweke and 
Ogbonna (2017). 
 
 
Dose-response modeling 
 
As mentioned earlier, the Beckon et al. (2008) model (Equation 7) 
reduces to log-logistic model if any of the slope parameters (β1 and 
β2) is zero, thus allowing simple statistical test for hormesis.  The 
growth  of    Staphylococcus    sp.,    firefly    luciferase    activity   or 

dehydrogenase activity in P. vermicola as a function of 
concentrations of penicillin, [HMIM]Cl or 4-CP respectively were 
fitted into the original model (Equation 7) using user-defined 
function in TableCurve 2D v. 5.01 curve fitting software by least 
squares minimization of residuals to test for the statistical 
significance of hormesis. In all data, the 95% confidence interval of 
the slopes β1 and β2 did not include zero indicating significant 
hormetic effects of the respective substance on the tested 
response. The parameters of the model were estimated freely 
without constraint at the first instance. The data were also fitted to 
Equation 7 without constraint on c while d was fixed at 100% and 
then with c and d fixed at 0 and 100%, respectively. The initial 
values of x1, x2, c and d used in the curve fitting were graphically 
deduced from x-y data plots. The initial values of Max, β1 and β2 

were manually adjusted until the predicted curve became close to 
the observed data. Subsequently, all parameters were 
automatically optimized to best initial parameter estimates in 
TableCurve 2D software. The values of ED-10, LDS, ED50 and M 
were estimated by reparameterization according to Equations 10, 
11, 12 and 15, respectively using graphically-anticipated initial 
parameters as optimized in TableCurve 2D. The ED-10 has two 
possible values, one on the left side of M (ED-10L) and another on 
the right side of M (ED-10R). In order to differentiate the two ED-10 
values, constraint was applied to limit value below or above M. The 
model parameters were estimated with d fixed at 100% and with c 
and d fixed at 0 and 100%, respectively while fitting ED-10, LDS, 
ED50 and M reparameterizations. The value of ymax was computed 
from the mean value of M and other parameters by using the M 
reparameterization.  

In order to compare the bilogistic model of Beckon et al. (2008) 
with Brain-Cousens and Cedergreen-Ritz-Streibig models, the 
hormesis data were also fitted with the two models in their original 
forms using TableCurve 2D as described earlier. Models were 
compared based on three goodness-of-fit statistics: Adjusted 
coefficient of determination (R2adj), root mean squared error 
(RMSE) and Akaike information criterion (AIC). The calculation of 
R2adj was implemented in TableCurve 2D V5.01. The RMSE was 
calculated as shown in Equation 16.  
 
  2Residual
RMSE

n m





                                                         (16) 
 
where residual is the difference between the observed and 
predicted responses, n is the number of observations and m is the 
number of model parameters. 
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Figure 3. Observed (data points) and predicted (lines) effects of: (a) penicillin on the growth of Staphylococcus species (Beckon 
et al., 2008), (b) 1-hexyl-3-methyl-imidazolium chloride [HMIM]Cl on firefly luciferase activity (Zhu et al., 2013), and (c) 4-
chlorophenol on P. vermicola dehydrogenase activity. Predictions were according to the Brain and Cousens (1989) model 
(Equation 1) [dashed line], Cedergreen et al. (2005) model (Equation 4) [dotted line] and Beckon et al. (2008) model (Equation 
7) [solid line]. Parameters c and d were fixed at 0 and 100, respectively. 

 
 
 
The AIC values were generated by performing nonlinear regression 
in SAS 9.2 statistical software. In addition, the effective doses and 
the dose at maximum stimulation (M) for all the dose-response 
relationships were also calculated by fitting the data into the 
reparameterized Brain-Cousens (Equations 2 and 3) and 
Cedergreen-Ritz-Streibig (Equations 5 and 6 substituted into 
Equation 4) models. The values obtained from the three models 
were compared using Duncan post-hoc tests implemented with IBM 
SPSS Statistics 25.  
 
 
RESULTS  
 
Figure 3 shows the three data sets as observed 
responses as well as responses predicted from the 
original Brain-Cousens (Equation 1), Cedergreen-Ritz-
Streibig (Equation 4) and bilogistic (Equation 7) models. 
All the three hormesis data sets were well fitted by each 
of the three models and detected significant hormetic 
effects of penicillin, 1-hexyl-3-methyl-imidazolium chloride 
and 4-CP on the growth of Staphylococcus sp., firefly 
luciferase activity and dehydrogenase activity in P. 
vermicola, respectively.  The Brain-Cousens and 
Cedergreen-Ritz-Streibig models can be reduced to 
monotonic sigmoidal model if f equals zero. The values of 
f (p < 0.01) in both models for all the data sets did not 
include zero. In all the data sets, 95% confidence interval 
of the slopes and the p values (p < 0.01) showed that β1 
and β2 did not include zero indicating significant hormetic 
effects of the respective substance (Table 2). The Brain- 
Cousens model could fit the data sets fairly well with the 
lowest adjusted R2 which were greater than 
0.97(penicillin data), 0.95 ([HMIM]Cl data) and 0.98 (4-
CP data). The bilogistic model of Beckon et al. (2008) 
had the lowest RMSE for all the data sets (Figure 4). With 
the exception of 4-CP data set, the  bilogistic  model  had 

the lowest AIC values in all the data sets. Judging from 
the plots and residuals, the bilogistic model provided a 
better description of the three hormesis data especially at 
low doses. At high doses, described by the downward 
curve (x ≥ M), the responses predicted from the three 
model tend to overlap indicating insignificant differences 
between them (Figure 3). Generally, the order of 
goodness-of-fit of the bilogistic model for the hormesis 
data was, effects of ionic liquid on luciferase activity > 
effects of 4-chlorophenol on P. vermicola dehydrogenase 
activity > effects of penicillin on the growth of 
Staphylococcus sp. 

The parameters and their statistical properties as 
derived from the original model are shown in Table 2. 
Applying constraint on parameters c and d has bearing 
upon the estimated values of other parameters. In 
Staphylococcus sp. and luciferase data sets, the 
estimated value of Max increased when d was fixed at 
100% and c allowed to be determined iteratively (Table 
2). In addition, this reduced the values of β1, increased 
the value of β2 and increased the value of x1. Conversely, 
in the P. vermicola data, fixing d at 100% and allowing c 
to be determined iteratively reduced the value of Max, 
increased the value of β1, reduced the value of β2 and 
reduced the value of x1. Generally, allowing c to be 
determined resulted to a better goodness-of-fit in terms of 
the R2. However, unrealistic negative values of c were 
produced in Staphylococcus and luciferase data sets. In 
P. vermicola data set, positive value of c was determined. 
This is because the response did not tend to zero with 
increasing concentrations of 4-CP.      

The model parameters and their statistical properties 
derived from the ED-10, LDS, ED50 and M 
reparameterizations are shown in Tables 3 to 5. 
Generally,  allowing   c  to  be  determined  improved  the
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Table 2. Model parameters and their statistical properties derived from original Beckon et al. (2008) model. 
 

Parameter 
Data setsa 

Staphylococcus species† Luciferase‡ Providencia vermicola 

c= 0     
c (%) fixed  0 0 0 
d (%) 101.355 ± 2.293** (96.622 – 106.089) 102.697 ± 3.187** (96.187 – 109.206) 95.663 ±  4.104** (87.281  – 104.046) 
Max (%) 171.341 ± 8.054** (154.719  – 187.963) 150.266 ± 3.137** (143.859 – 156.674) 213.691 ± 53.974* (103.461  – 323.921) 
x1  0.0056 ± 0.0004 (U/mL)** (0.0004  – 0.006) 0.0040 ± 0.0005 (M)** (0.003 – 0.005) 0.0596 ± 0.0196 (mM)* (0.020  – 0.100) 
β1  4.212 ± 0.985 (%mL/U)* (2.178  – 6.246) 1.586 ± 0.353 (%/M)** (0.864 – 2.308) 2.217 ± 0.671 (%/mM)* (0.847  – 3.587) 
x2  0.0253 ± 0.0009 (U/mL)** (0.023  – 0.027) 0.074 ± 0.001 (M)** (0.071 – 0.076) 0.2087 ± 0.0408 (mM)** (0.125  – 0.292) 
β2  -3.591 ± 0.245 (%mL/U)** (-4.097  – -3.086) -3.901 ± 0.177 (%/M)** (-4.263 – -3.539) -2.118 ± 0.182 (%/mM)** (-2.489  – -1.747) 
R2 (R2 adj) 0.9916 (0.9894) 0.9959 (0.9950) 0.9937 (0.9924) 
    
d =100    
c (%)  -66.978 ± 31.621* (-132.240  – -1.716) -9.379 ± 2.806* (-15.111 –  -3.647) 6.648 ± 2.100* (2.360 –  10.937) 
d (%) fixed 100 100 100 
Max (%) 221.999 ± 52.565** (113.511  – 330.486) 155.777 ± 3.660** (148.303  – 163.251) 169.286 ± 8.664** (151.591– 186.981) 
x1  0.0065 ± 0.0008 (U/mL)** (0.005  – 0.008) 0.0044 ± 0.0006 (M)** (0.003  –  0.006) 0.0457 ± 0.0039 (mM)** (0.038 – 0.054) 
β1  3.154 ± 0.595 (%mL/U)** (1.926  – 4.382) 1.272 ± 0.127 (%/M)** (1.012 – 1.532) 3.223 ± 0.533 (%/mM)** 2.134 – 4.312 
x2  0.0274 ± 0.0028 (U/mL)** (0.022  – 0.033) 0.0758 ± 0.0013 (M)** (0.073  –  0.079) 0.2456 ± 0.0119 (mM)** 0.221 – 0.270 
β2  -1.848 ± 0.527 (%mL/U)* (-2.936  – -0.761) -3.333 ± 0.186 (%/M)** (-3.714  –  -2.953) -2.731 ± 0.232 (%/mM)** -3.205 – -2.257 
R2 (R2 adj) 0.9977(0.9971) 0.9972 (0.9966) 0.9948 (0.9937) 
    
c = 0,  d = 100    
c (%) fixed  0 0 0 
d (%) fixed 100 100 100 
Max (%) 172.375 ± 8.358** (155.161  – 189.588) 151.722 ± 2.913** (145.780 – 157.663) 188.967 ± 18.210** (151. 828 –226.106) 
x1  0.0055 ± 0.0004 (U/mL)** (0.005  – 0.006) 0.0038 ± 0.0005 (M)** (0.003 – 0.005) 0.0517 ± 0.0068 (mM)** (0.038  – 0.066) 
β1  3.971 ±  0.822 (%mL/U)** (2.278  – 5.664) 1.375 ± 0.155 (%/M)** (1.059 – 1.691) 2.881 ± 0.514 (%/mM)** (1.832 – 3.931) 
x2  0.0252 ± 0.0009 (U/mL)** (0.023  – 0.027) 0.0734 ± 0.0011 (M)** (0.071 – 0.076) 0.2295 ±  0.0220 (mM)** (0.185 – 0.274) 
β2  -3.575 ± 0.242 (%mL/U)** (-4.074  – -3.077) -3.870 ± 0.169 (%/M)** (-4.215 – -3.525) -2.199 ± 0.158 (%/mM)** (-2.521 – -1.878) 
R2 (R2 adj) 0.9915 (0.9897) 0.9958 (0.9951) 0.9934 (0.9923) 

 
aData are given as mean ± standard error with 95% confidence interval in parentheses. †Data from Beckon et al. (2008). ‡Data from Zhu et al. (2013). 
**P < 0.0001for the estimated parameters. *P < 0.01for the estimated parameters 
 
 
 
goodness-of-fit characteristics in all the data sets. The 
reparameterization of the bilogistic model did not affect 
the goodness-of-fit characteristics. The values of the 
adjusted R2

 remained same with all reparameterizations for 
a particular hormesis data. In addition, reparameterization 
of the model for a particular effective dose did not affect 
estimation of other parameters (such as x1, x2, β1, β2and 
M). In each hormesis data, the values of each parameter 
either remained same or varied insignificantly (p > 0.05) 
in different model reparameterizations. 

The goodness-of-fit statistics for the hormesis data 
fitted to the hormesis models in their original forms are as 
shown in Figure 4. The comparison of effective doses 
derived from the three hormesis models for the three data 
sets are shown in Table 6. The ED50 of penicillin, 1-hexyl-
3-methyl-imidazolium chloride and 4-CP derived from the 
bilogistic model were 0.032 ± 0.001 U/ml,  0.088  ±  0.001 

M and 0.365 ± 0.008 mM, respectively. The dose of 
maximum stimulation (M) obtained from the bilogistic 
model were 0.0101 ± 0.0005 U/ml, 0.0221 ± 0.0009 M 
and 0.086 ± 0.004 mM for penicillin, 1-hexyl-3-methyl-
imidazolium chloride and 4-CP, respectively. There were 
no significant differences among the ED50 and M values 
derived from the three models for all the hormetic dose-
response relationships. With the exception of the 
luciferase data, the LDS values of penicillin and 4-CP did 
not vary significantly among the three hormesis models. 
Generally, the ED-10L obtained from Brain-Cousens model 
differed significantly from the values obtained from the 
other models. The Brain-Cousens and Cedergreen-Ritz-
Streibig models overestimated the ymax in the penicillin 
and 1-hexyl-3-methyl-imidazolium chloride data. In the 4-
CP data, the Brain-Cousens model underestimated 
underestimated the ymax. 
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Table 3. Parameters derived from reparameterized models based on the effects of penicillin on Staphylococcus species growth. 
 

Parametera 
Bilogistic model (Equation 7) reparameterized for incorporation of: 

ED-10L LDS ED50 M 

d = 100      
c (%)  -66.762 ± 31.464* (-131.700 – -1.824) -66.094 ± 30.984* (-130.042– -2.145) -66.230 ± 31.095* (-130.407– -2.052) -66.760 ± 31.510* (-131.793– -1.726) 
d (%) fixed 100 100 100 100 
x1 (U/mL) 0.0065 ± 0.0008** (0.0048  – 0.0082) 0.0065 ± 0.0008** (0.0049 – 0.0081) 0.0065 ± 0.0008*** (0.0049  – .0082) 0.0065 ± 0.0008** (0.0048 – 0.0082) 
β1 (%mL/U) 3.158 ± 0.593** (1.935  – 4.381) 3.169 ± 0.585** (1.962 – 4.376) 3.165 ± 0.587** (1.953  – 4.377) 3.154 ± 0.593** (1.929 – 4.379) 
x2 (U/mL) 0.027 ± 0.003** (0.021  – 0.033) 0.027 ± 0.003** (0.022 – 0.033) 0.027 ± 0.003** (0.022  – 0.033) 0.027 ± 0.003** (0.022 – 0.033) 
β2 (%ml/U) -1.852 ± 0.525* (-2.936  – -0.768) -1.864 ± 0.520* (-2.937 – -0.790) -1.860 ± 0.522* (-2.938  – -0.783) -1.851 ± 0.527* (-2.938 – -0.764) 
ED-10L (U/mL) 0.0040 ± 0.0003** (0.0035  – 0.0046) - - - 
LDS (U/mL) - 0.023 ± 0.0002** (0.022 – 0.023) - - 
ED50 (U/mL) - - 0.044 ± 0.006** (0.031  – 0.058) - 
M (U/mL) - - - 0.0099 ± 0.0003** (0.0093 – 0.0105) 
ymax (%) - - - 165.140 
R2 (R2 adj) 0.998 (0.997) 0.998 (0.997) 0.998 (0.997) 0.998 (0.997) 
     
c= 0, d = 100*     
c (%) fixed  0 0 0 0 
d (%) fixed 100 100 100 100 
x1 (U/mL) 0.0055 ± 0.0004** (0.0046 – 0.0064) 0.0055 ± 0.0004** (0.0046 – 0.0064) 0.0055 ± 0.0004** (0.0046 – 0.0064) 0.0055 ± 0.0004** (0.0046 – 0.0064) 
β1 (%mL/U) 3.971 ± 0.822** (2.278 – 5.664) 3.971 ± 0.822** (2.278 – 5.664) 3.971 ± 0.822** (2.278 – 5.664) 3.971 ± 0.822** (2.278 – 5.664) 
x2 (U/mL) 0.0252 ± 0.0009** (0.0233 – 0.0270) 0.0252 ± 0.0009** (0.0233 – 0.0270) 0.0252 ± 0.0009** (0.0233 – 0.0270) 0..0252 ± 0.0008** (0.0233 – 0.0270) 
β2 (%mL/U) -3.575 ± 0.242** (-4.074 – -3.077) -3.575 ± 0.242** (-4.074 – -3.077) -3.575 ± 0.242** (-4.074 – -3.077) -3.575 ± 0.242** (-4.074 – -3.077) 
ED-10L (U/mL) 0.0035 ± 0.0003** (0.0029  – 0.0040) - - - 
LDS (U/mL) - 0.0230 ± 0.0004** (0.0222 – 0.0238) - - 
ED50 (U/mL) - - 0.0323  ± 0.0005** (0.0313 – 0.3334) - 
M (U/mL) - - - 0.0101 ± 0.0005** (0.0090 – 0.0112) 
ymax (%) - - - 161.038 
R2 (R2 adj) 0.991 (0.990) 0.991 (0.990) 0.991 (0.990) 0.991 (0.990) 

 
aData are given as mean ± standard error with 95% confidence interval in parentheses ,**P < 0.0001for all estimated parameters; *P < 0.01 for the 
estimated parameters. 
 
 
 
DISCUSSION 
 
Modeling biphasic dose-response relationship is 
important for optimizing plant, animal and human nutrition 
and for accurate evaluation of the effectiveness and 
toxicity of pharmaceuticals and other chemicals that 
produce biphasic effects (Beckon et al., 2008). Accurate 
descriptions of hormetic dose-response relationship have 
bearing upon establishment of safe limits for hormetic 
substances including food additives, drugs and 
environmental pollutants. Mathematical models are 
important tool for understanding the biological bases of 
dose-response relationship leading to improvements in 
protection of plant, animal, human and environmental 
health. In this case, the bilogistic model proposed by 
Beckon et al. (2008) presented a formidable tool to 
characterize effects of substances that produce both 
stimulatory and inhibitory effects on living system. The 
bilogistic model was shown to be superior to Brain-
Cousens and Cedergreen-Ritz-Streibig models in 
describing the three hormetic data sets presented in this 
study.  According   to   the  goodness-of-fit  statistics  (R2, 

RMSE and AIC), the bilogistic model of Beckon et al. 
(2008) provided a better description of the hormesis data. 
Generally, the graphical agreement between observed 
and fitted values in all the hormesis data was best with 
the bilogistic model. Although the Cedergreen- Ritz-
Streibig model produced somehow similar results when 
compared with the bilogistic model, it overestimated the 
value of ymax in the Staphylococcus data set. The major 
difference observed in the fitting of the data to the models 
occurred mainly at low dose region. The ED-10L values for 
instance obtained from the Brain-Cousens model for all 
the hormesis data are significantly lower or higher than 
values obtained from the other models. The high dose 
region (x ≥ M) described by the downward curve seems 
to be unaffected. This could be attributed to the fact that 
in all the models, the switching function that determines 
the downward curve is same logistic function. The 
switching function describing the low doses is linear for 
Brain-Cousens model but logistic for the bilogistic model. 
Thus, the Beckon et al. (2008) model would be 
particularly suited for data with logistic dose-response 
relationship  at  low  doses  (0 ≤ x ≤ M) to be described by
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Table 4. Parameters derived from reparameterized models based on the effects of 1-hexyl-3-methyl-imidazolium chloride [HMIM]Cl on firefly 
luciferase activity. 
 

Parameter 
Bilogistic model (Equation 7) reparameterized for incorporation of: 

ED-10L LDS ED50 M 

d = 100     
c (%)  -9.379 ± .2.807* (-15.111 – -3.647) -9.379 ± 2.807* -15.111 – -3.647) -9.379 ± 2.807* (-15.111  – -3.647) -9.379 ± 2.807* (-15.111  – -3.647) 
d (%) fixed 100 100 100 100 
x1 (M) 0.0044 ± 0.0006** (0.0032 – 0.0056) 0.0044 ± 0.0006** (0.0032 – 0.0056) 0.0044 ± 0.0006** (0.0032 –  0.0056) 0.0044 ± 0.0006** (0.0032 –  0.0056) 
β1 (%/M) 1.272 ± 0.127** (1.012 – 1.532) 1.272 ± 0.127** (1.012 – 1.532) 1.272 ± 0.127** (1.012 – 1.532) 1.272 ± 0.127** (1.012 – 1.532) 
x2 (M) 0.076 ± 0.001** (0.073 – 0.079) 0.076 ± 0.001** (0.073 – 0.079) 0.076 ± 0.001** (0.073 – 0.079) 0.076 ± 0.001** (0.073 – 0.079) 
β2 (%/M) -3. 333 ± 0.186** (-3.714 – -2.953) -3. 333 ± 0.186** (-3.714 – -2.953) -3.333 ± 0.186** (-3.714 – -2.953) -3.333 ± 0.186** (-3.714 – -2.953) 
ED-10L (M) 0.0015 ± 0.0001** 0.0012 – 0.0017) - - - 
LDS (M) - 0.0613 ± 0.0007** (0.0599 – 0.0627) - - 
ED50 (M) - - 0.093 ± 0.002** (0.090  – 0.097) - 
M (M) - - - 0.0212 ± 0.0008** (0.0196 – 0.0228) 
ymax (%) - - - 146.368 
R2 (R2 adj) 0.9972 (0.9966) 0.9972 (0.9966) 0.9972 (0.9966) 0.9972 (0.9966) 
     
c = 0, d = 100     
c (%) fixed  0 0 0 0 
d (%) fixed 100 100 100 100 
x1 (M) 0.0038 ± 0.0005** (0.0029 – 0.0048) 0.0038 ± 0.0005** (0.0029 – 0.0048) 0.0038 ± 0.000** (0.0029 – 0.0048) 0.0038 ± 0.0005** (0.0029 – 0.0048) 
β1 (%/M) 1.375 ± 0.155** (1.059 – 1.691) 1.375 ± 0.155** (1.059 – 1.691) 1.375 ± 0.155** (1.059 – 1.691) 1.375 ± 0.155** (1.059 – 1.691) 
x2 (M) 0.073 ± 0.001** (0.071 – 0.076) 0.073 ± 0.001** (0.071 – 0.076) 0.073 ± 0.001** (0.071 – 0.076) 0.073 ± 0.001** (0.071 – 0.076) 
β2 (%/M) -3. 870 ± 0.169** (-4.215 – -3.525) -3. 870 ± 0.169** (-4.215 – -3.525) -3. 870 ± 0.169** (-4.215 – -3.525) -3. 870 ± 0.169** (-4.215 – -3.525) 
ED-10L (M) 0.0014 ± 0.0001** 0.0011– 0.0016) - - - 
LDS (M) - 0.0616 ± 0.0008** (0.0600 – 0.0632) - - 
ED50 (M) - - 0.0881 ± 0.0011** (0.0858  – 0.0903) - 
M (M) - - - 0.0221 ± 0.0009** (0.0200 – 0.0241) 
ymax (%)    148.944 
R2 (R2 adj) 0.9958 (0.9951) 0.9958 (0.9951) 0.9958 (0.9951) 0.9958 (0.9951) 
 
aData are given as mean ± standard error with 95% confidence interval in parentheses. **P < 0.0001for all estimated parameters.  *P < 0.01for the 
estimated parameters. 

 
 
 
upward curve. A typical example is hormetic data having 
delayed stimulation at low doses. In addition, Beckon et 
al. (2008) model can represent dose-responses across a 
wide range of doses. In toxicological studies, a wide 
variety of dose-response patterns are generated which 
cannot all be described by any known single model. The 
bilogistic model is therefore an important candidate in the 
list of models for description of hormetic dose response 
relationships. 

Given that hormesis is becoming more frequent in 
toxicological studies and that the bilogistic model 
describes certain hormetic dose-response relationship 
better than other models, it is necessary to describe a 
method for determination of effective doses using this 
model. The application of the bilogistic model when it 
offers better fit to a dose-response data will help to get rid 
of errors inherent in using other models that do not 
adequately describe a hormetic data or in ignoring 
response stimulation at  sub-inhibitory  doses.  According 

to Schabenberger et al. (1999), ignoring hormesis and 
fitting data with monotonic function can lead to 
substantial bias in estimates of effective dosages. 
Although Zhu et al. (2013) suggested that mathematical 
manipulation is not suitable for a complex expression like 
the bilogistic model of Beckon et al. (2008), this study 
successfully extended the bilogistic model to enable 
estimation of any effective dose while accommodating 
hormesis. The extensions presented here allows 
determination of effective doses at both stimulatory and 
inhibitory dose ranges. 

Fitting data to nonlinear model with many parameters 
such as the bilogistic model can potentially be 
challenging. There is no explicit expression for the 
parameters of this model and so the parameter values 
must be estimated by iterative process. The ability of 
nonlinear regression to achieve rapid convergence partly 
depends on good initial parameter estimates (Mcmeekin 
et al., 1999). Selecting good initial estimates of the model 
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Table 5. Parameters derived from original and reparameterized models based on the effects of 4-chlorophenol on P. vermicola dehydrogenase activity. 
 

Parameter 
Bilogistic model (Equation 7) reparameterized for incorporation of: 

ED-10L LDS ED50 M 

d = 100     
c (%)  6.648 ± 2.100* (2.360 –10.937) 6.648 ± 2.100* (2.360 – 10.937) 6.648 ± 2.100* (2.360 – 10.937) 6.648 ± 2.100* (2.360 – 10.937) 
d (%) fixed 100 100 100 100 
x1 (mM) 0.046 ± 0.004** (0.038 – 0.054) 0.046 ± 0.004** (0.038 – 0.054) 0.046 ± 0.004** (0.038 – 0.054) 0.046 ± 0.004** (0.038 – 0.054) 
β1 (%/mM) 3.223 ± 0.533** (2.134 – 4.312) 3.223 ± 0.533** (2.134 – 4.312) 3.223 ± 0.533** (2.134 – 4.312) 3.223 ± 0.533** (2.134 – 4.312) 
x2 (mM) 0.246 ± 0.012** (0.221 – 0.270) 0.246 ± 0.012** (0.221 – 0.270) 0.246 ± 0.012** (0.221 – 0.270) 0.246 ± 0.012** (0.221 – 0.270) 
β2 (%/mM) -2.731 ± 0.232** (-3.205 – 2.257) -2.731 ± 0.232** (-3.205 – 2.257) -2.731 ± 0.232** (-3.205 – 2.257) -2.731 ± 0.232** (-3.205 – 2.257) 
ED-10L (mM) 0.026 ± 0.002** (0.022 – 0.030) - - - 
LDS (mM) - 0.219 ± 0.005** (0.210  – 0.230) - - 
ED50 (mM) - - 0.343 ± 0.010 (0.323  – 0.362) - 
M (mM) - - - 0.086 ± 0.004** (0.078 – 0.094) 
ymax (%)    150.758 
R2 (R2 adj) 0.995 (0.994) 0.995 (0.994) 0.995 (0.994) 0.995 (0.994) 
     
c= 0, d = 100     
c (%) fixed  0.000 0.000 0.000 0.000 
d (%) fixed 100.000 100.000 100.000 100.000 
x1 (mM) 0.052 ± 0.007** (0.038  – 0.066) 0.052 ± 0.007** (0.038  – 0.066) 0.052 ± 0.007** (0.038  – 0.066) 0.052 ± 0.007** (0.038  – 0.066) 
β1 (%/mM) 2.881 ± 0.514** (1.832 – 3.931) 2.881 ± 0.514** (1.832 – 3.931) 2.881 ± 0.514** (1.832 – 3.931) 2.881 ± 0.514** (1.832 – 3.931) 
x2 (mM) 0.230 ± 0.022** (0.185  – 0.274) 0.230 ± 0.022** (0.185  – 0.274) 0.230 ± 0.022** (0.185  – 0.274) 0.230 ± 0.022** (0.185  – 0.274) 
β2 (%/mM) -2.199 ± 0.158** (-2.521  – -1.878) -2.199 ± 0.158** (-2.521   – -1.878) -2.199 ± 0.158** (-2.521 –  -1.878) -2.199 ± 0.158** (-2.521  –  -1.878) 
ED-10L (mM) 0.026 ± 0.002** (0.022 –  0.030) - - - 
LDS (mM) - 0.216 ± 0.005** (0.205 – 0.227) - - 
ED50 (mM) - - 0.365 ± 0.008** (0.348 – 0.381) - 
M (U/mL) - - - 0.086  ± 0.004** (0.077  – 0.095) 
ymax (%)    153.053 
R2 (R2 adj) 0.993 (0.992) 0.993 (0.992) 0.993 (0.992) 0.993 (0.992) 

 

aData are given as mean ± standard error with 95% confidence interval in parentheses. **P < 0.0001for all estimated parameters. *P < 0.01for the estimated 
parameters. 
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Figure 4. Goodness-of-fit statistics (a: Adjusted R2, b: RMSE and c: AIC) for Beckon et al. (2008), Cedergreen et al. (2005) and Brain-
Cousens models describing the three data sets (Penicillin, [HMIM]Cl and 4-Chlorophenol [4-CP]). 
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Table 6. Comparison of effective doses derived from the hormesis models for the three data sets 
 

Effective dosesa 
Model 

Brain-Cousens Cedergreen-Ritz-Streibig Beckon et al. (Bilogistic) 

Penicillin (U/mL)    
ED50  0.032 ± 0.001* (0.030 – 0.034) 0.032 ± 0.001* (0.030 – 0.033) 0.032  ± 0.001* (0.031 – 0.333) 
LDS 0.023 ± 0.001* (0.022 – 0.024) 0.022 ± 0.0004* (0.022– 0.023) 0.023 ± 0.0004* (0.022 – 0.024) 
ED-10R 0.022 ± 0.001* (0.020  – 0.023) 0.017 ± 0.0004* (0.020 – 0.022) 0.021 ± 0.0004* (0.0214  – 0.0223) 
ED-10L 0.0015 ± 9.818 E-5* (0.0013  – 0.0017) 0.0028 ± 0.0003** (0.0022 – 0.0034) 0.0035 ± 0.0003** (0.0029  – 0.0040) 
M 0.0119± 0.0005* (0.0108  – 0.0129) 0.0115 ± 0.0003* (0.0108 – 0.0122) 0.0101 ± 0.0005* (0.0090 – 0.0112) 
ymax (%) 159.647 165.182 161.038 
    
[HMIM]Cl (M)    
ED50  0.089 ± 0.004* (0.080 –  0.097) 0.088 ± 0.002* (0.084– 0.091) 0.088 ± 0.001* (0.086  – 0.090) 
LDS 0.055 ± 0.002* (0.051– 0.059) 0.060 ± 0.001** (0.058 – 0.062) 0.062 ± 0.001** (0.060 – 0.063) 
ED-10R 0.051 ± 0.002* (0.047 – 0.054) 0.056 ± 0.001** (0.053 – 0.058) 0.057 ± 0.001** (0.055– 0.058) 
ED-10L 0.0026 ± 0.0002* (0.0021  – 0.0031) 0.0009 ± 0.0002** (0.0006  –  0.0012) 0.0014 ± 0.0001** 0.0011– 0.0016) 
M 0.024 ± 0.001* (0.021  – 0.026) 0.026 ± 0.001* (0.024 – 0.027) 0.022 ± 0.001* (0.020   – 0.024) 
ymax (%) 158.161 154.655 148.944 
    
4-CP (mM)    
ED50  0.358 ± 0.010* (0.337 – 0.379) 0.360 ± 0.008* (0.344 – 0.375 0.365 ± 0.008* (0.348 – 0.381) 
LDS 0.223 ± 0.006* (0.210 – 0.236) 0.214 ± 0.005* (0.204 – 0.223) 0.216 ± 0.005* (0.205 – 0.227) 
ED-10R 0.204 ± 0.006* (0.190  – 0.217) 0.195 ± 0.005* (0.185 – 0.204 ) 0.026 ± 0.002** (0.022 – 0.030) 
ED-10L 0.014 ± 0.001*  (0.012  – 0.016) 0.024 ± 0.002** (0.021 – 0.028) 0.026 ± 0.002** (0.022 –  0.030) 
M 0.102 ±  0.004* (0.093 – 0.112) 0.093 ± 0.003* (0.088 – 0.099) 0.086  ± 0.004* (0.077 – 0.095) 
ymax (%) 146.894 153.317 153.053 
 
aData are given as mean ± standard error with 95% confidence interval in parentheses. c= 0, d = 100.  Within rows, for each parameter derived from 
different models and same hormesis data, values with same number of asterisks are not significantly different from each other (p > 0.05). 
 
 
 
parameters is therefore a prerequisite to successful curve 
fitting of a nonlinear model with many parameters. The 
ease of this selection depends on the interpretability of 
the parameters. Practically-interpretable parameters 
often lead to better initial parameter estimate and 
consequently simplify the model fitting process 
(Mcmeekin et al., 1999). This is because the initial 
parameter value can easily be deduced from the x-y plot 
of the observed data. Some parameters of the bilogistic 
model (such as d, c, x1, x2, ED-10, ED50. LDS and M) are 
interpretable and can be easily deduced from x-y plot of 
the observed data. Other parameters cannot be easily 
deduced from the observed data. For instance, Max is a 
theoretical maximum response to be reached by rising 
curve in the absence of descending curve or vice versa. 
  The interpretation of Max is not in agreement with its 
fitted value. Other parameters that cannot easily be 
deduced are the slope parameters β1 and β2. However, 
the fact that β1 must have a positive value while β2 must 
have a negative value would be helpful. Selecting good 
initial estimates for such non interpretable parameter can 
be time consuming and require some kind of experience. 
However, the process of selecting good initial estimates 
to ensure convergence is simplified with  TableCurve  2D. 

By supplying the values of the interpretable parameters 
and making smart guess of the values of non-
interpretable parameters to make the regression line 
somehow close to observed data, the initial estimates of 
all parameters can be updated automatically to optimal 
values in TableCurve 2D. In doing this, care must be 
taken to ensure that unrealistic values are not produced 
especially in cases (like ED-10) where two values are 
possible. In Table Curve 2D, and possibly other statistical 
softwares, application of constraint on ED-10 may not be 
critical. The initial parameter estimate for any particular 
ED-10 (ED-10L or ED-10R) could be optimized in TableCurve 
2D by selecting value around the required ED-10. Since 
ED-10 is an interpretable parameter, this approach of 
using graphically-deduced initial estimates can simply be 
applied to estimate ED-10L or ED-10R without applying 
constraint.  

Another practical challenge observed in fitting the 
bilogistic model is the poor estimation properties of the 
upper (d) and lower (c) asymptotes. When allowed to be 
estimated iteratively, unrealistic negative values of the 
lower asymptote were produced in the Staphylococcus 
sp. and luciferase data sets. In these data sets, there was 
no obvious saturation of effect at infinite  doses. Similarly, 



 
 
 
 
estimation of upper asymptote (d) could result to values 
with wide standard error and 95% confidence limit. As 
pointed out by Schabenberger et al. (1999), it is important 
to consider whether estimation of lower (c) and upper (d) 
asymptotes is necessary. In our data, theoretical 
considerations suggested that the lower and upper 
asymptotes should be 0 and 100%, respectively. The 
statistical properties of other model parameters improved 
when c and d were fixed as 0 and 100%, respectively. 
The reparameterization of the bilogistic models is the 
substitution of Max with a function containing interpretable 
parameters. Generally, these extensions did not affect 
estimation of other parameters and goodness-of-fit 
especially when the value of c and d were fixed. 
However, minor variations which are not statistically 
significant may occur. Thus, the values of ED-10, LDS, 
ED50 and M were estimated with good statistical 
properties. In addition, the value of ymax was slightly 
affected when c and d were fixed.   

The reparameterized models were successfully applied 
to estimate effective doses and their confidence intervals. 
Although reparameterization of models was discouraged 
by Cedergreen et al. (2005) and recommended the use of 
bisection and delta methods implemented in some 
statistical software, delta method could only allow the 
estimation of EDK doses with statistical properties and to 
extract M without statistical properties. In addition, the 
mathematical operation is not implementable in some 
statistical software. The reparameterized models can 
easily be coded into any curve fitting statistical software. 
Hence, the approach as recommended by Cedergreen et 
al. (2005) may not be easier than reparameterization for 
some users (Nweke and Ogbonna, 2017). Furthermore, 
the limitations of the delta method with respect to 
statistical properties of M underline the importance of 
reparameterization as an alternative approach for 
exploration of hormesis quantities in hormetic dose-
response relationships. The competitiveness of this 
approach remains a pending question that is worth 
exploring (Belz and Piepho, 2012). 

 
 
Conclusion 
 
This study described a general approach to estimate the 
effective doses at hormetic and toxic dose ranges in 
inverted U-shaped dose-response relationships by 
reparameterization of a bilogistic model. The extended 
models were successfully applied to test for significance 
of hormesis and estimate effective doses and their 
confidence limits by non-linear curve fitting. Therefore, 
the suggested reparameterizations would result in accurate 
determination of the effective doses, their standard errors 
and confidence limits in dose (concentration)-response 
relationships that could be best described by the bilogistic 
model. The use of the bilogistic model where it is most 
suitable will help to remove errors that may arise from the 
use  of  other  hormesis  models  that  do  not  adequately 
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represent the data.  In addition, the models will be 
applicable in the study of variability of inverted U-shaped 
dose-response relationships in many disciplines. These 
models could potentially help to refine regulatory 
guidelines for protection of human, animal, plant and 
microbial populations which would have bearing upon the 
management of environmental health. 
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